数学家的故事:高斯巧解数学题

综合 2024-10-12 04:24:26

高斯是德国杰出的数学家、物理学家,近代数学的'奠基人之一。

高斯上小学后,对数学很感兴趣。

有一天,数学老师白尔脱又有点不大高兴。他一走进教室,就板着脸对同学们说:“今天德课是你们自己算题,谁先算完,谁就先回家吃饭。”说着,就在黑板上写下了这样一个题目:1+2+3+4+5+6+......+100=?

同学们立刻拿出练习本,低头认真地算起来。

白尔脱呢?则坐在一旁看起小说来了。

谁知他刚看了一页,小高斯就举手报告老师说:“老师,这道题我算完了。”

“算完了?”白尔脱没好气地挥挥手,“你算得这样快,准会算错,再算算看吧~!”

“不会错的,我检查过了,还验算了一遍。”高斯理直气壮的说。

白尔脱走到高斯座位前,拿起他的练习本一看,*是“5050”,显然一点不错。

“你是怎么算的?”白尔脱惊奇地问道。

高斯一板一眼地回答说:“我发现这个题目一头一尾挨次的两个数相加,都是101,总共50个101,所以*就是50x101=5050。”

“真妙啊!”白尔脱兴奋地拍了一下桌子,接着大声地对全体同学说:“真没想到,你们当中竟会出现数学神童!”

从此,白尔脱完全改变了对农村孩子高斯地看法。他尤其喜欢高斯灵活聪明、刻苦学习地态度,在学习中,他经常对高斯进行个别辅导。

在白尔脱地精心培养下,高斯对数学地兴趣越来越浓,造诣越来越深,十七岁时,他就发现了数论中的二次互反律。

【高斯巧解数学题的故事】相关文章:

1.数学王子高斯的故事

2.高斯小时候的故事

3.高斯数学家的故事

4.高斯的故事数学手抄报

5.数学家高斯定理的故事

6.数学家高斯的故事推荐

7.数学家的故事高斯

8.数学家高斯儿时的故事

数学家的故事:高斯巧解数学题2

高斯是德国杰出的数学家、物理学家,近代数学的奠基人之一。

高斯上小学后,对数学很感兴趣。

有一天,数学老师白尔脱又有点不大高兴。他一走进教室,就板着脸对同学们说:“今天德课是你们自己算题,谁先算完,谁就先回家吃饭。”说着,就在黑板上写下了这样一个题目:1+2+3+4+5+6+……+100=?

同学们立刻拿出练习本,低头认真地算起来。

白尔脱呢?则坐在一旁看起小说来了。

谁知他刚看了一页,小高斯就举手报告老师说:“老师,这道题我算完了。”

“算完了?”白尔脱没好气地挥挥手,“你算得这样快,准会算错,再算算看吧~!”

“不会错的,我检查过了,还验算了一遍。”高斯理直气壮的说。

白尔脱走到高斯座位前,拿起他的练习本一看,*是“5050”,显然一点不错。

“你是怎么算的?”白尔脱惊奇地问道。

高斯一板一眼地回答说:“我发现这个题目一头一尾挨次的两个数相加,都是101,总共50个101,所以*就是50x101=5050。”

“真妙啊!”白尔脱兴奋地拍了一下桌子,接着大声地对全体同学说:“真没想到,你们当中竟会出现数学神童!”

从此,白尔脱完全改变了对农村孩子高斯地看法。他尤其喜欢高斯灵活聪明、刻苦学习地态度,在学习中,他经常对高斯进行个别辅导。

在白尔脱地精心培养下,高斯对数学地兴趣越来越浓,造诣越来越深,十七岁时,他就发现了数论中的二次互反律。

数学故事:高斯巧解数学题3

高斯是德国杰出的数学家、物理学家,近代数学的奠基人之一。

高斯上小学后,对数学很感兴趣。

有一天,数学老师白尔脱又有点不大高兴。他一走进教室,就板着脸对同学们说:今天德课是你们自己算题,谁先算完,谁就先回家吃饭。说着,就在黑板上写下了这样一个题目:1+2+3+4+5+6+......+100=?

同学们立刻拿出练习本,低头认真地算起来。

白尔脱呢?则坐在一旁看起小说来了。

谁知他刚看了一页,小高斯就举手报告老师说:老师,这道题我算完了。

算完了?白尔脱没好气地挥挥手,你算得这样快,准会算错,再算算看吧~!

不会错的,我检查过了,还验算了一遍。高斯理直气壮的说。

白尔脱走到高斯座位前,拿起他的练习本一看,*是5050,显然一点不错。

你是怎么算的?白尔脱惊奇地问道。

高斯一板一眼地回答说:我发现这个题目一头一尾挨次的两个数相加,都是101,总共50个101,所以*就是50x101=5050。

真妙啊!白尔脱兴奋地拍了一下桌子,接着大声地对全体同学说:真没想到,你们当中竟会出现数学神童!

从此,白尔脱完全改变了对农村孩子高斯地看法。他尤其喜欢高斯灵活聪明、刻苦学习地态度,在学习中,他经常对高斯进行个别辅导。

在白尔脱地精心培养下,高斯对数学地兴趣越来越浓,造诣越来越深,十七岁时,他就发现了数论中的二次互反律。

高斯解数学难题的教育家名人故事4

1796年的一天,在德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的两道数学题,像往常一样,前2道题目在2个小时内顺利地完成了。但青年发现今天导师给他多布置了一道题。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。他也没有多想,就做了起来。然而,青年感到非常吃力。

开始,他还想,也许导师特意给我增加难度吧。但是,随着时间一分一秒地过去了,第三道题竟毫无进展。青年绞尽脑汁,感到自己学到的数学知识对解开这道题没有什么帮助。困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题...当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题!见到导师时,青年感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……”导师接过学生的作业一看,当即惊呆了。他的声音都颤抖了,说:“这……真是你自己……做出来的?”青年有些疑惑地看着激动不已的导师,回答道:“是的,但我很笨,竟然花了整整一个晚上才做出来。”导师让他坐下,取出圆规和直尺,在书桌上铺开纸,叫青年当着他的面做这道题。青年很快就解开了这道题。导师激动地对青年说:“你知不知道,你解开了一道有两千多年历史的数学难题?牛顿也没有解出来,阿基米德没有解出来,你竟然一个晚上就解出来了!你真是天才啊!我最近正在研究这道难题,昨天给你布置题目时,不小心把写有这个题目的小纸条夹在了给你的题目里。”后来,每当这个青年回忆这件事时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能就无法解开它。这个青年就是数学王子高斯。

高斯的数学故事5

说的是两百多年以前的一段小故事,一位9岁小孩的数学天才使他的老师大吃一惊。

1787年,在德国一所乡村小学的三年级课堂里,数学老师出了一道计算题:

1+2+3+4+5+…+98+99+100。

把100个数一个一个地加起来,这件事让三年级的小同学来做,是一种考验。

不料,老师刚说完题目,班级里的一位学生,名叫高斯,就把他写好*的小石板交上去了。

起初老师毫不在意。这么快就交来,谁知道写了些什么呢?

小学生数学故事:全班只有一个人做对:后来发现,全班只有一个人做对,就是这位飞快交卷的高斯。

高斯解答的方法更使老师惊讶不已。

高斯把这100个数从两头往中间,一边取一个,配起对来,1和100,2和99,3和98,…,共计配成50对,每一对两个数相加都等于101,因而原式=101×50=5050。

这种算法虽然不是小高斯首创,但是事先谁也没有教过他。在两百多年前的德国,这样的计算方法是在大学里讲授,叫做等差级数求和。即使在科学技术突飞猛进的今天,等差级数求和也要到高中数学课里才系统地学习。当年只有9岁的高斯,出身农户,家境贫寒,居然这样勤于动脑,善于动脑,使老师无比欣慰和深受感动。老师名叫彪特耐尔,特意到大城市汉堡买来数学书,送给高斯看,并且请自己的年轻助手巴特尔斯对高斯多多关照。

后来呢?

后来高斯继续勤奋学习,刻苦钻研,在数学、天文学和物理学中作出许许多多重大贡献,被称为“数学家之王”,和阿基米德、牛顿齐名。高斯是数学史上一颗光芒永恒的天王巨星。

名人数学家高斯的故事6

高斯(gauss1777~1855)生于brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教bartels变得很熟,而bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和bartels讨论数学,但不久之后,bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且*发现了二项式定理的一般形式、数论上的「二次互逆定理」(lawofquadraticreciprocity)、质数分布定理(primenumertheorem)、及算术几何平均(arithmetic-geometricmean)。

1795年高斯进入哥廷根(g?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。希腊时代的数学家已经知道如何用尺规作出正2m×3n×5p边形,其中m是正整数,而n和p只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯*了:

[名人数学家高斯的故事]相关文章:

高斯成为数学家的故事7

导语:高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。下面是小编整理的高斯成为数学家的故事,希望对大家有所帮助。

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+.+97+98+99+100=

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:

1+2+3+4+.+96+97+98+99+100

100+99+98+97+96+.+4+3+2+1

=101+101+101+.+101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100除以2便得到*等于5050

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才

[高斯成为数学家的故事]相关文章:

数学家高斯的故事8

书中描写的是高斯在数学领域杰出的表现,并介绍了这位世界上最伟大的数学家生平的一些有趣的小故事,读后让人崇拜向往不已。高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。高斯七岁时进了小学,在破旧的教室里上课。高斯十岁时,老师考了那道著名的从一加到一百,终于发现了高斯的才华,老师知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。高斯曾说过:“数学是科学的女皇。”而在数学上取得崇高成就的他则被称为“数学王子”。未满十九岁他,利用一个晚上,就解决一椿两千多年的数学悬案----正十七边形的尺规作图,二十二岁便获得博士学位,成为各国争相邀请的学者。就算是世界上最伟大的数学家也要利用整整一个通宵,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求*,才解决一椿两千多年的数学悬案。除了数学外,高斯曾先后从事天文字研究、大地测量工作以及物理的钻研,并在各领域中获致非常高的成就。虽说高斯不喜欢浮华荣耀,但在他成名后,各界加诸于他的荣耀,就像雨点般纷纷落在身上,肯定他的贡献。高斯一生始终保持着勤奋刻苦的态度,使人难以想象他是一位大教授,是世界上最伟大的数学家。

高考数学导数解题技巧9

高考数学复习应该两个月的时间了,高考数学导数是高考必考的一种题型,有什么解题思路,下面由小编为大家整理高考数学导数解题技巧有关的资料,希望对大家有所帮助!

1.通过选择题和填空题,全面考查函数的基本概念,*质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象*的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值,函数单调*,应用题,与三角函数或向量结合。

1.单调*问题

研究函数的单调*问题是导数的一个主要应用,解决单调*、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调*时要注意对参数的分类讨论和函数的定义域。

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在xx0时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时,在x=x0处也可能有极值,例如函数f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是,函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理*思维。关于切线方程问题有下列几点要注意:

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2)和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

(3)两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。

4.函数零点问题

函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调*与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调*。

5.不等式的*问题

*不等式f(x)≥g(x)在区间d上成立,等价于函数f(x)-g(x)在区间d上的最小值等于零;而*不等式f(x)>g(x)在区间d上成立,等价于函数f(x)-g(x)在区间d上的最小值大于零,或者*f(x)min≥g(x)max、f(x)min>g(x)max。因此不等式的*问题可以转化为用导数求函数的极值或最大(小)值问题。

1、函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和*质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

2、数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3、特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用

数学家高斯小故事10

数学家高斯的小故事讲的是数学家中最出名的天才,那一定是高斯。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

1数学家高斯的小故事之高斯简介

约翰·卡尔·弗里德里希·高斯(johanncarlfriedrichgauss,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

2数学家高斯的小故事

关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了*。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。

小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。

小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。

高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。

值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。

有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”

3数学家高斯的小故事点评

小朋友们,当我们在学习和生活中被难题所困扰时,不妨学学高斯,换一种方法去思考,或许你就会发现爱你不一样的天地,从而让你变得更加优秀,将问题快速的解决。

数学家高斯小故事11

数学家高斯的小故事讲的是数学家中最出名的天才,那一定是高斯。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

1数学家高斯的小故事之高斯简介

约翰·卡尔·弗里德里希·高斯(johanncarlfriedrichgauss,1777年4月30日-1855年2月23日)德国著名数学家、物理学家、天文学家、大地测量学家。是近代数学奠基者之一,高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。高斯和阿基米德、牛顿并列为世界三大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

2数学家高斯的小故事

关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了*。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。

小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。

小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。

高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。

值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,于是,他决定继续读数学系。

有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。”

3数学家高斯的小故事点评

小朋友们,当我们在学习和生活中被难题所困扰时,不妨学学高斯,换一种方法去思考,或许你就会发现爱你不一样的天地,从而让你变得更加优秀,将问题快速的解决。

巧用连比解题数学故事12

我们学习完了比的应用,在解答比的应用题时,应先读懂题目中的前项和后项分别代表什么,这样才能确解题正确。我们还学习了连比,可以将两个不同的比合二为一。如甲:乙=3:4,乙:*=7:9,那么

甲:乙:*

3:4

7:9

21:28:36

连比对应用题也有很大作用。这里来考考大家,看看你是否掌握了连比的应用?

小明与小丽的书籍数量之比为1:2,小华的书籍是小明的1/3还多3本。小华、小明、小丽书籍之和为43本,他们各有多少本书?

*:

从题目中,可以知道小华的书籍是小明的1/3还多3本。如果我们把总本数去掉小华多的3本,那么小华的书籍是小明的1/3,这句话也可以说成小华的书籍与小明书籍的比是1:3。所以

小华:小明:小丽

1:3

1:2

1:3:6

40本图书正好共分成(3+1+6)份,用(433)(3+1+6)=4本,求的是1份的本数。再根据连比,小明有3份,用43=12(本);小华有1份还多3本,用41+3=7(本);小丽有6份用46=24(本)。

是不是看上去很复杂,但通过将分数与比转化,然后应用连比的知识就能很快解答了呢?有时候把题目中的拌脚石拿开之后,再去还原,这样就可以快速正确地解答出题目了。

精选数学家的故事:数学天才高斯13

高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:

1+2+3+.....+97+98+99+100=?

老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?

高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:

1+2+3+4+.....+96+97+98+99+100

100+99+98+97+96+.....+4+3+2+1

=101+101+101+.....+101+101+101+101

共有一百个101相加,但算式重复了两次,所以把10100除以2便得到*等于

从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为数学天才!

数学王子高斯--解题14

1796年的一天,德国歌廷根大学,一个19岁的很有数学天赋的青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。像往常一样,前两道题目在两个小时内顺利地完成了。第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。青年做着做着,感到越来越吃力。开始,他还想,也许导师见我每天的.题目都做的很顺利,这次特意给我增加难度吧。

但是,时间一分一秒地过去了,第三道题竟毫无进展。青年绞尽脑汁,也想不出现有的数学知识对解开这道题有什么帮助。困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去寻求*。终于,当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题!

见到导师时,青年感到有些内疚和自责。他对导师说:“您给我布置的第三道题我做了整整一个通宵,我辜负了您对我的栽培……”导师接过青年的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这真是你自己做出来的?”青年有些疑惑地看着激动不已的导师,回答道:“当然,但是,我很笨,竟然花了整整一个通宵才做出来。”导师请青年坐下,取出圆规和直尺,在书桌上铺开纸,叫青年当着他的面做一个正17边形。青年很快地做出了一个正17边形。导师激动地对青年说:“你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!”

多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。”这个青年就是数学王子高斯。

哲理:有些事情,在不清楚它到底有多难时,我们往往能够做得更好。

高考数学高分解题技巧15

一年一度的高考就要到了,你是怎么样解答题目的?要想高分,有什么技巧?看看下面吧!

一、调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角*”,通过清点用具、暗示重要知识和、提醒常见解题误区和自己易出现的错误等,进行针对*的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

二、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

三、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳*一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入优秀思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

四、“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。

先做同科同类型的题目,思考比较集中,知识和的沟通比较容易,有利于提高单位时间的效益。

高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗。

5.先点后面。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。

6.先高后低。

即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

五、一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

六、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小23个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“*质”上影响着后继各步的解答。

所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

七、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为较早依据。

这就要求不但会而且要对、对且全,全而规范。

会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

因为字迹潦草,会使阅卷老师的靠前印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。

“书写要工整,卷面能得分”讲的也正是这个道理。

八、面对难题,讲究,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。

下面有两种常用。

1.缺步解答。

对一个疑难问题,确实啃不动时,一个明智的解题是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。

如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。

还有象完成数学归纳法的靠前步,分类讨论,反证法的简单情形等,都能得分。

而且可望在上述处理中,从感*到理*,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。

解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。

若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,靠前问做不上,可以靠前问为“已知”,完成第二问,这都叫跳步解答。

也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

九、以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

十、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的去探求新的解题途径,往往能得到突破*的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

十一、回避结论的肯定与否定,解决探索*问题

对探索*问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

十二、应用*问题思路:面—点—线

解决应用*问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学,建立数学模型,此为“线”,如此将应用*问题转化为纯数学问题。

当然,求解过程和结果都不能离开实际背景。

高中数学高分解题技巧16

掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。下面就是小编跟大家分享高中数学高分解题技巧,大家一定要在平时的练习中不断积累!

高分数学解题方法1:调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角*”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对*的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

高分数学解题方法2:沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳*一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入优秀思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

高分数学解题方法3:“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

高分数学解题方法4:一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

高分数学解题方法5:“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难

。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

4.先小后大。

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

5.先点后面。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高分数学解题方法6:确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“*质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

高分数学解题方法7:讲求规范书写,力争既对又全

考试的又一个特点是以卷面为较早依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的靠前印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

高分数学解题方法8:面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。

对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的靠前步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感*到理*,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。

解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,靠前问做不上,可以靠前问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

高分数学解题方法9:以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

高分数学解题方法10:应用*问题思路:面—点—线

解决应用*问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用*问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

高分数学解题方法11:执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破*的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

高分数学解题方法12:回避结论的肯定与否定,解决探索*问题

对探索*问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

高中数学高分解题技巧17

导语:掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。下面就由小编为大家带来高中数学12种高分解题技巧,大家一起去看看怎么做吧!

高分数学解题方法1:调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角*”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对*的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

高分数学解题方法2:沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳*一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入优秀思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

高分数学解题方法3:“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

高分数学解题方法4:一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

高分数学解题方法5:“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难

。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,

4.先小后大。

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

5.先点后面。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高分数学解题方法6:确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“*质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

高分数学解题方法7:讲求规范书写,力争既对又全

考试的又一个特点是以卷面为较早依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的靠前印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

高分数学解题方法8:面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。

对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的靠前步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感*到理*,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。

解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,靠前问做不上,可以靠前问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

高分数学解题方法9:以退求进,立足特殊

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

高分数学解题方法10:应用*问题思路:面—点—线

解决应用*问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用*问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

高分数学解题方法11:执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破*的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

高分数学解题方法12:回避结论的肯定与否定,解决探索*问题

对探索*问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。