数学问题解题方法整理
一、植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
二、置换问题
题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设*的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。
列式:(2000-1880)÷(20-10)=120÷10=12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。
三、盈亏问题(盈不足问题)
题目中往往有两种分*案,每种分*案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分*案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
《第2篇:初中数学解题方法整理》
1、学会画图
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出*,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
2、审题
认真、仔细地审题。审题的靠前步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”
所以,在实际解题时,应特别注意,审题要认真、仔细。
3、增加习题的难度
应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃*思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
4、要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。
《第3篇:减少初中数学解题错误的方法整理》
同学们认真学习,下面是对减少初中数学解题错误方法的内容讲解,希望给同学们的学习很好的帮助。
课前准备要有预见*
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。
例如,讲解方程x/0.7-(0.17-0.2x)/0.03=1之前,要预见到本题要用分式的基本*质与等式的*质,两者有可能混淆,因而要在复习提问时准备一些分数的基本*质与等式的*质的练习,帮助学生弄清两者的不同,避免产生混乱与错误。
因此备课时,要仔细研究教科书正文中的防错文字、例题后的注意、小结与复习中的应该注意的几个问题等,同时还要揣摸学生学习本课内容的心理过程,授业解惑,使学生预先明了容易出错之处,防患于未然。
如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。
通过上面对减少初中数学解题错误方法的知识内容讲解,相信可以很好的帮助同学们对数学题目的解答,同学们认真学习哦。
《第4篇:避免初中数学解题错误的方法整理》
导语:智者一切求自己,愚者一切求他人。下面是小编为大家整理的,数学知识。更多相关信息请关注CNFLA学习网!
(一)课前准备要有预见*
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。例如,讲解方程x/0.7-(0.17-0.2x)/0.03=1之前,要预见到本题要用分式的基本*质与等式的*质,两者有可能混淆,因而要在复习提问时准备一些分数的基本*质与等式的*质的练习,帮助学生弄清两者的不同,避免产生混乱与错误。因此备课时,要仔细研究教科书正文中的防错文字、例题后的注意、小结与复习中的应该注意的几个问题等,同时还要揣摸学生学习本课内容的心理过程,授业解惑,使学生预先明了容易出错之处,防患于未然。如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。
(二)课内讲解要有针对*
(三)课后讲评要有总结*
要认真分析学生作业中的问题,总结出典型错误,加以评述。通过讲评,进行适当的复习与总结,也使学生再经历一次调试与修正的过程,增强识别、改正错误的能力。
《第5篇:高考数学解题方法技巧整理参考》
数学是研究数量、结构、变化以及空间模型等概念的一门学科。数学网为大家推荐了高考数学解题方法技巧,请大家仔细阅读,希望你喜欢。
方法一、调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角*,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对*的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二、内紧外松,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三、沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳*一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入优秀思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四、六先六后,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行兴奋灶的转移,而先同后异,可以避免兴奋灶过急、过频的跳跃,从而减轻大脑负担,保持有效精力,
4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的梯度题,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施分段得分,以增加在时间不足前提下的得分。
方法五、一慢一快,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的基础工程,题目本身是怎样解题的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
方法六、确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从数量上,而且从*质上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
方法七、讲求规范书写,力争既对又全
考试的又一个特点是以卷面为较早依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的靠前印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、感情分也就相应低了,此所谓心理学上的光环效应。书写要工整,卷面能得分讲的也正是这个道理。
方法八、面对难题,讲究方法,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的靠前步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感*到理*,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,靠前问做不上,可以靠前问为已知,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
小编为大家提供的高考数学解题方法技巧,大家仔细阅读了吗?最后祝同学们学习进步。