中考数学关于菱形的知识考点

综合 2024-10-17 08:55:04

1定义:有一组邻边相等的平行四边形叫做菱形.

(1)菱形的四条边都相等;。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形.

(4)菱形的面积等于两条对角线长的积的一半:

2.s菱=争6(n、6分别为对角线长).

3.判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形;

(3)对角线互相垂直的平行四边形是菱形.

4.对称*:菱形是轴对称图形也是中心对称图形.

中考数学知识考点:勾股定理

中考数学知识考点:勾股定理

勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方:

勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:

那么这个三角形是直角三角形

中考几何矩形菱形正方形复习考点2

一、矩形

矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90时,其它的边、角位置也都随之变化。因此矩形的*质是在平行四边形的基础上扩充的。

1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)

2、矩形*质定理1:矩形的四个角都是直角。

3.矩形*质定理2:矩形的对角线相等。

4、矩形判定定理1:有三个角是直角的四边形是矩形。

说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。

5、矩形判定定理2:对角线相等的平行四边形是矩形。

说明:要判定四边形是矩形的方法是:

法一:先*出是平行四边形,再证出有一个直角(这是用定义*)

法二:先*出是平行四边形,再证出对角线相等(这是判定定理1)

法三:只需证出三个角都是直角。(这是判定定理2)

二、菱形

菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。

1、菱形:有一组邻边相等的平行四边形叫做菱形。

2、菱形的*质1:菱形的四条边相等。

3、菱形的*质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

4、菱形判定定理1:四边都相等的四边形是菱形。

5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

说明:要判定四边形是菱形的方法是:

法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义*)。

法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理2)

法三:只需证出四边都相等。(这是判定定理1)

三、正方形

正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。

1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形*质定理1:正方形的四个角都是直角,四条边都相等。

3、正方形*质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。

5、正方形判定定理2:两条对角线相等的菱形是正方形。

注意:要判定四边形是正方形的方法有

方法一:靠前步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义*)

方法二:靠前步证出对角线互相垂直;第二步证出是矩形。(这是判定定理1)

方法三:靠前步证出对角线相等;第二步证出是菱形。(这是判定定理2)