新苏教版初二数学重要知识点
提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本*质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本*质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
第2篇:新苏教版初二数学复习知识点参考
一.不等关系
※1.一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.
※2.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
非负数:大于等于0(≥0)、0和正数、不小于0
非正数:小于等于0(≤0)、0和负数、不大于0
二.不等式的基本*质
※1.掌握不等式的基本*质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,
即:如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,
即如果a>b,并且c>0,那么ac>bc,.
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,
即:如果a>b,并且c<0,那么ac
※2.比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
a>b,则a-b>0
a=b,则a-b=0
a
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三.不等式的解集:
※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
※2.不等式的解可以有无数多个,一般是在某个范围内的所有数.
※3.不等式的解集在数轴上的表示:
用数轴表示不等式的解集时,要确定边界和方向:
①定点:有等号的是实心圆点,无等号的是空心圆圈;
②方向:大向右,小向左
第3篇:新苏教版初二年级数学知识点归纳
提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本*质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本*质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
第4篇:人教版数学初二知识点
(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式:
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解:
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式:
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法:
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)?(a+b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法:
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法:
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法:
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本*质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本*质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程:
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
第5篇:苏教版二年级下册数学知识要点
苏教版数学二年级(下册)各单元知识要点,你都掌握了吗?下面小编给大家介绍苏教版二年级下册数学知识要点,赶紧来看看吧!
靠前单元有余数的除法
1、有余数除法以的意义:
在平均分一些物体时,有时有剩余,这样的除法是有余数的除法。
2、余数与除数的关系:
在有余数的除法中,余数一定比除数小。
3、除法列竖式计算方法:
(1)先写“厂”表示除号。
(2)在除号里写被除数。
(3)除号外面左侧写除数。
(4)把商写在除号的外面,被除数上面,并和被除数个位对齐。
(5)把除数和商的积写在被除数的下面(注意:相同数位要对齐)。
(6)用被除数减去商和除数的乘积得结果写在横线下面,与个位对齐。
4、有余数除法的试商方法:
先想想被除数里面最多有几个除数,再利用乘法口诀试商。
5、除法算式中各部分之间的关系:
被除数÷除数=商+余数
被除数=商×除数+余数
被除数=除数×商+余数
余数=被除数?商×除数
第二单元时、分、秒
1、认识钟面:
(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。
(2)钟面上有12个大格,每个大格里有5个小格。钟面上共有60个小格。
(3)时针走1大格是1小时。时针走1大格分针走1圈,也就是60小格,1时=60分。
分针走1小格是1分,走1大格是5分。
秒针走1小格是1秒,走1大格是5秒。
分针走1小格秒针走1圈,1分=60秒
2、认识整时方法:
分针指着12,时针指着几就是几时。
时针、分针、秒针全部重合的时间是12时,
时针和分针成一条直线的时间是6时,
时针和分针成直角的时间是3时和9时。
3、认识几时几分方法:
时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。
4、记录时间有两种方法:
(1)文字法:如:5时50分;
(2)用电子表法记录时刻时,几时就写几,再写“:”,后面写分时要占两位,分针不够整十的,十位要用0占位。如:8时零5分写作8:05
5、认识大约几时方法:
时针接近几就是几时。此时,分针一般指在数字12左右。
6、计算两段时间之间的时间方法:
用结束的时间减去开始的时间。整时减整时,分钟减分钟,分钟不够减向整时借1时在分钟上加60分钟再减。整时借出的1时要记得减去。
7、比较时间:
单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。
第三单元认识方向
1、认识东、南、西、北四个方向
(1)早上起来,面向太阳,前面是东,后面是西,左面是北,右面是南。
(2)依据一个确定的方向找其他三个方向的方法:面南背北,左东右西;面北背南,左西右东;面东背西,左北右南;面西背东,左南右北。
2、地图上的方向:
地图通常是按“上北下南,左西右东”绘制的。
3、绘制简单示意图的方法:
先选好观察点,把选好的观察点画在平面图的中心位置,再确定好各物体相对于观察点的方向,在纸上按“上北下南,左西右东”绘制,用“↑”标出方向。
4、看简单路线图描述行走路线的方法:
(1)看路线图确定好自己所处的位置,以自己所处的位置为中心
(2)根据“上北下南,左西右东”的规则来确定目标和周围事物所处的方向
(3)根据目标的方向和路程确定所要行走的路线。(一般以“在”字后面物体的位置为中心,以“的”字前面物体的位置为中心)
5、认识东南、东北、西南、西北四个方向:
从“东”出发,东和北之间的方向就叫东北,东和南之间的方向就叫东南;
从“西”出发,西和北之间的方向就叫西北,西和南之间的方向就叫西南。
6、指南针:
红*指针指针北面,白*指针指着南面。
树的年轮:较疏的向着南面,较密的向着北面。
树叶:较疏的向着北面,较密的向着南面
晴朗的夜间:朝着北极星的方向是北面。
影子的方向:和太阳所在的方向相反。
第四单元认识万以内的数
1、数位顺序:
(1)从右边起,靠前位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。
(2)相邻两个数位之间是十进率:10个一是10,10个十是100,10个百是1000,10个千是10000。
(3)最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999。
2、万以内数的读写:
(1)写数时从最高位写起,按照数位顺序,哪一位上的数字是几,就在哪一位上写几,哪一位上一个数也没有,就在那一位上写0占位。写数用***数字1,2,3,……
(2)万以内数的读法:千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几。从高位读到低位,中间有一个或连续两个0,都只读一个“零”,末尾不管有几个0,都不读。读数时用语文汉字:一、二、三……,十,百,千,万
3、认识算盘上的数:
在算盘上记数时,要拨珠靠梁,一个下珠表示1,一个上珠表示5。
4、比较数的大小:
(1)数位不同的:数位多的数就大,数位少的数就小。
(2)数位相同的:从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,那么就比较下一位,以此类推直到比较出大小为止。
5、万以内数的近似数:
一个数接近几百或几千就近似于几百或几千。约等号“≈”,读作约等于。
(1)一般接近几百看十位:如果十位上的数小于5,就直接写百位上的数,如果十位上的数大于5,就要把百位上的数字再加1。
(2)一般接近几千看百位:如果百位上的数小于5,就直接写千位上的数,如果百位上的数大于5,就要把千位上的数字再加1。
6、用几个数字组数:
可以把数字依据从大到小或从小到大的顺序依次组合排列。要组成最大的数,就把数字按照由大到小排列;要组成最小的数,就把数字按照由小到大排列。如果有0,0不能排在最高位。
第五单元分米和毫米
1、我们学过的长度单位:
由大到小依次是米(m)、分米(dm)、厘米(cm)、毫米(mm)。
2、长度单位的进率:
米、分米、厘米、毫米相邻两个单位之间的进率是10。
3、长度单位换算:
1米=10分米1分米=10厘米
1厘米=10毫米1米=100厘米
1分米=100毫米1米=1000毫米
4、长度单位的加、减或比较:
两个不同的长度单位的数量进行加、减或比较大小时,必须先化成相同的单位再进行。
5、物体实际测量方法:
(1)依据物体的大小选择合适的长度单位:一般比较长的物体用米做单位,如教室、*场、旗杆、大树……
比较短的物体依据实际情况和显示的数字确定合适的长度单位,如:大拇指到食指之间的距离大约1分米,我们的手指甲长约1厘米,教室门高约2米,数学书长约20厘米,书桌高约7分米……
(2)在进行物体测量时,先要把直尺或米尺的零刻度对准物体的一端,再看物体的另一端对准直尺或米尺上的什么数字,长度就是这个数字。如果是一把断尺测量物体,同样要将断尺左边与物体一端对齐,再看物体的另一端对准断尺什么数字,然后用另一端的数字减去左边的数字,就是物体的实际长度。
第六单元两、三位数的加法和减法
1、口算两位数的加法:
(1)个位上的数加个位上的数,整十数加整十数,再把两个结果加起来;
(2)一个两位数加另一个两位数的整十数,再用它们的结果加上剩下的一位数。
2、口算两位数的减法:
(1)整十数与整十数相减,个位数与个位数相减,再把两次所得的差相加;
(2)把减数分成整十数和一位数,用被减数先减整十数,再减一位数;(3)把减数凑成和它接近的整十数,用它们的差再加上多凑的数或减去少凑的数。
3、两位数的加、减混合运算:
按照从左往右的顺序依次计算。计算时,一定要看清运算符号。
4、三位数加两三位数笔算方法:
(1)计算时先把相同数位对齐,从个位加起,哪一位上的数相加满十,要向前一位进一。
(2)加法验算方法:把两个加数的位置调换后再加一遍,两次得到的结果相等就说明计算结果正确,不相等,则说明计算结果不正确,需要重新计算。
5、三位数减两三位数笔算方法:
(1)先把相同数位对齐,从个位减起,哪一位上的数不够减,要从前一位退1,在本位上加10再减;
(2)当个位不够减需要退位时,如果十位上是0,无1可退,就要从百位上退1当成10个十先传递到十位,再从十位退1到个位,当成10个一再计算。
(3)减法验算方法:
差+减数=被减数(最常用的)
被减数?差=减数
第七单元角的初步认识
1、认识角
(1)角由一个顶点和两条边组成的图形。【角的尖尖的部分是顶点,两条边是直直的】。
(2)角的大小与两条边张开的程度有关:两条边张开的越大,角的开口越大,角就越大;两条边张开的越小,角的开口越小,角就越小。
(3)角的大小与两条边的长短无关。
(4)把物体剪掉一部分再数角时,剪的方法不同,会有不同的结果。
2、认识直角、锐角、钝角
(1)直角:直角的两条边垂直,所有的直角都相等。
(2)锐角、钝角:以直角作为衡量标准,比直角小的角是锐角,比直角大的角是钝角。
(3)比较角的方法:用三角尺上的直角去比一比,先把角的顶点与三角尺上直角的顶点重合,一条边与三角尺上的一条直角边重合,另一条边若与三角尺上的另一条直角边重合就是直角,如果角的另一条边在三角尺上直角边的内部就是锐角,如果角的另一条边在三角尺上直角边的外部就是钝角。
(4)钟面上的角:钟面上3时整和9时整分针和时针所组成的角是直角,1时整、2时整、10时整、11时整分针和时针所组成的角是锐角,4时整、5时整、7时整、8时整分针和时针所组成的角是钝角,6时整分针和时针成一条直线。
第八单元数据的整理和收集
1、同一问题、同一事物可以有不同的分类标准,分类标准不一样,统计结果也不相同。
2、整理数据方法:可以用画“正”,√,○,□或△等符号来表示一个人或一种事物,但用画“正”字的方法收集整理数据比较简便。
3、应注意事项:
(1)整理时一定要细心,注意不要遗漏,也不能重复。
(2)在进行数据整理时,题目要求用哪种方法就用哪种方法,没有要求的就用画“正”字的方法。
(3)在进行数据的统计时,合计的数据要用数字表示。
第6篇:初二重点数学知识点
分式的基本*质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为a/b=(a-c)/(b-c);a/b=(a-c)/(b-c)(c不等于0),其中a、b、c是整式
注意:(1)“c是一个不等于0的整式”是分式基本*质的一个制约条件;
(2)应用分式的基本*质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;
(3)若分式的分子或分母是多项式,运用分式的基本*质时,要先用括号把分子或分母括上,再乘或除以同一整式c;
(4)分式的基本*质是分式进行约分、通分和符号变化的依据。