五年级数学上册《分数》知识点整理归纳

综合 2024-10-24 19:15:32

分数与除法

【知识点】:

理解分数与除法的关系:被除数除数=(除数不为0)。

分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。

运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。

把带分数化成假分数的方法。(两种)

把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。

将整数与分母相乘的积加上分子作分子,分母不变。

分数基本*质

【知识点】:

理解分数的基本*质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

联系分数与除法的关系以及商不变的规律,来理解分数的基本*质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

运用分数的基本*质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数

【知识点】:

理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。

会找分子和分母的最大公因数。

补充【知识点】:

其他找最大公因数的方法。

找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:

可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。

如果两个数是不同的质数,那么这两个数的公因数只有1。

如果两个数是连续的自然数,那么这两个数的公因数只有1。

如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。

也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)

4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。

约分

【知识点】:

理解约分的含义。

把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

理解最简分数的含义。

像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。

掌握约分的方法。

约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。

补充【知识点】:

比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。

例如:○

找最小公倍数

【知识点】:

理解公倍数和最小公倍数的含义。

两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。

找两个数的公倍数和最小公倍数的方法。

先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。

两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。

补充【知识点】:

其他找公倍数和最小公倍数的方法。

找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。

例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。

如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。

也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)

分数的大小

【知识点】:

理解通分的含义。

把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。

通分的两个要点:

和原来分数相等。

分母相同的数字。

分数大小比较。

同分母分数相比较,分子越大分数越大。

同分子分数相比较,分母越小分数越大。

分子分母都不相同的分数相比较的方法。

用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。

是把两个分数化成分子相同的分数,再比较大小。

补充【知识点】:

通分一般以最小公倍数作分母。

数学与交通

相遇

【知识点】:

分析简单实际问题中的数量关系。

路程=速度时间

用方程解决简单的实际问题。

强调列方程解应用题的步骤:

(1)找到题中的等量关系式

(2)解设所求量为x

(3)根据等量关系式列出相应的方程

(4)解答方程,注意结果无单位名称。

(5)检验做答。

补充【知识点】:

速度=路程时间时间=路程速度

旅游费用

【知识点】:

会利用已有的知识,依据实际情况给出较经济的方案。

掌握用列表法解决问题。

看图找关系

【知识点】:

能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表的直观*。

结合实际问题情境,分析量与量之间的关系。

根据图的变化确定或描述行为、事件的变化。

第2篇:六年级数学上册分数乘法知识点归纳

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bcac+bc=(a+b)c

第3篇:五年级上册数学知识点的归纳梳理

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.61.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。

小数除法的计算方法:

计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。

计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。

2、取近似数的方法:

取近似数的方法有三种,①四舍五入法②进一法③去尾法

一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。

取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。

3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

4、循环小数的表示方法:

一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.36361.587587

另一种是简写的方法:即只写出一组循环节,然后在循环节的靠前个数字和最后一个数上面点上圆点。如:12.

5、有限小数:小数部分的位数是有限的小数,叫做有限小数。

6、无限小数:小数部分的位数是无限的小数,叫做无限小数。

第4篇:小学数学四年级下册知识点整理归纳

(一)四则运算:

1、四则运算运算顺序:

(1)、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。

(2)、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。

(3)、算式里有括号时,要先算括号里面的,再算括号外面的。(小括号起到改变运算顺序的作用)。

2、加法、减法、乘法和除法统称为四则运算。

3、有关0的运算:

(1)一个数加上0得原数。a+0=a

(2)一个数减去零还得原数。a-0=a

(3)任何一个数乘0得0。a0=0

(4)0除以一个非0的数等于0。0a=0(a0).0不能做除数,0作除数没有意义。

4、被减数等于减数,差是0.a-b=0a=b

5、※:除和除以不同。a除以b,写成ab。a除b,写成ba。

6、※:列综合算式时,如果含有乘除法或加减法时,必须先算加减法,一定要给加减法加上小括号。如:章师傅要生产600个零件,已经生产了120个,剩下的要十天完成,平均每天生产多少个?

(600-120)10=48(个)

7、※:把两个算式合并成一个综合算式:找相同数替换,把含有相同数结果的算式往里代。

如:59+80=139和3204=80列综合算式,80两个算式都有,把第二个含有相同数结果的算式往靠前个里代,59+3204。

如:76-52=24,244=6合成()

8、※:填□,列综合,从最后一步入手。

如:77+23

﹨∕

25□

/

25(77+23)

(二)位置与方向:

1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)

2、位置间的相对*。会描述两个物体间的相互位置关系。

※:(1)怎样判断观测点:要指出一个物体的位置,必须以另一个物体为参照物。以谁为参照物,就以谁为观测点。以谁为观测点,就以谁为中心画出方向标。

如:甲在乙北偏东30方向上,乙为参照物,以乙为观测点。在后面的地点是观测点。

如:小芳家琳琳家,小芳家为参照物,以小芳家为观测点。

※:(2)北偏东30,角度北偏向东,夹角靠近北面。

※:(3)两位置相对*,以这两个不同地点为观测点,描述对方所在地的方向时,方向正好相反(东西,北南,东偏北西偏南)。如:b在a的西偏北30,那么a在b的东偏南30。

3、在平面图上标明物*置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具*置,标名称。

4、描述路线图时,要先按行走路线,确定每一个观测点,然后,以每一个观测点为参照物,描述到下一个目标行走的方向和路程。

5、简单路线图的绘制。

(三)运算定律及简便运算:

1、加法运算定律:

(1)、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

(2)、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上靠前个数,和不变。(a+b)+c=a+(b+c)

※:交换律改变的是数的位置,结合律改变的是运算顺序。结合律的标志是小括号的应用。

2、乘法运算定律:

(1)、乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba

(2)、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以靠前个数,积不变。(ab)c=a(bc)

※:特殊数的乘积:52=10254=1001258=1000258=200754=300

※:在乘法中,如果一个因数是25或125,另一个因数正好是4或8的倍数,就将另一个因数分解成4或8与其他数乘积的形式,再利用乘法结合律先算254或1258.

(3)、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b)c=ac+bc

拓展1:(a-b)c=ac-bc

拓展2:(abc)m=ambmcm

拓展3:(a+b+c)m=am+bm+cm

拓展4:(a-b)c=ac-bc

※:注意如果乘法算式,可以找出相同的因数时,逆用乘法分配律。

acbc=(ab)c

acbc=(ab)c

※:乘法分配律是乘、加两种运算的规律。乘法交换律、乘法结合律只是乘法运算。简算时,判断用哪种定律。

3、连减的*质:

(1)一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

(2)在连减运算中,任意交换减数的位置,差不变。a-b-c=a-cb

※:在加法或减法计算中,当某个数接近整十、整百或整千时,可以把这个数先当成整十、整百或整千的数进行加减,对于原数与整十、整百、整千相差的数,要根据多加要减去,少加还要加,多减要加上,少减还要减的原则进行处理。

如:多减要加上762-598=762-600+2=162+2=164

少减还要减768-303=768-300-3=468-3=465

多加要减去156+43=156+44-1=200-1=199

少加还要加145+156=145+155+1=300+1=301

4、连除的*质:

(1)一个数连续除以两个数,等于除以这两个数的积。abc=a(bc)

(2)一个数连续除以几个数,任意交换除数的位置,商不变。abcd=adbc

5、有关简算的拓展(另附纸):

10238-382125253212588

3.25+1.9810.32-1.983796+373+37

易错的情况:0.6+0.4-0.6+0.43899+99

(四)小数的意义和*质:

1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。把单位1平均分成10份,100份,1000份这样的一份或几份可以用分母是10、100、1000的分数来表示,也可以用小数表示。

2、小数是十进制分数的另一种表现形式。

3、十分之几、百分之几、千分之几的分数可以用小数来表示。

4、小数分数的转化:

(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。它的计数单位是十分之一。

(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。它的计数单位是百分之一。

(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。它的计数单位是千分之一。

5、小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.001

6、每相邻两个计数单位间的进率是10。

7、一个小数里有多少个计数单位的问题:如:0.678里有()个0.001。0.678写成分数是678/1000,因为678/1000中有678个1/1000,所以0.678里有678个0.001。

8、数位上的各个数表示什么含义。下面数中8的意思:8.36(8个一);3.86(8个0.1)等等。

9、几位小数,是指小数部分含有几位数的小数。

10、小数由整数部分、小数点、小数部分组成的。

11、默写小数的数位顺序表(在数位顺序表中,每相邻两个计数单位间的进率是10)。。

12、整数部分的最低位是个位,没有最高位;小数部分的最高位是十分位,没有最低位。因此没有最大的小数,也没有最小的小数。

13、※:给几个数字,根据要求写数。如:用6、0、2、4按要求写数。最大的一位小数:642.0最小的两位小数:20.46最大的三位小数:6.420

14、小数的读法:整数部分按照整数读法来读,再读小数点,小数部分要顺次读出每一个数。(整数部分是0的小数,整数部分就读0;小数部分有几个0就读出几个0.)

15、小数的写法:整数部分按照整数的写法来写,整数部分是0就写0,再在个位的右下角点小数点;小数部分依次写出每一个数。

16、※:最有最大的一位小数,最小的一位小数是0.1。

17、小数的*质:小数的末尾添上0或去掉0,小数的大小不变。作用可以化简小数等。

注意:小数中间的0不能去掉。

取近似数时有一些末尾的0不能去掉。(小数的末尾是指小数的最低位)。

18、增加小数位数及改写整数为小数的方法:增加小数位数,不改变小数的大小,只在小数的末尾添上0。整数改为小数,首先在整数右下角点上小数点,然后根据需要,添上相应个数的0。

19、小数大小比较(排成竖列,小数点对齐):先比较整数部分,整数部分相同比较十分位,十分位相同比较百分位,小数的大小和数位多少无关。如:3.7896和37.8.

20、※:两个整数或小数之间,如果没有小数位数的限制,他们之间的小数有无数个。

21、两数之间填数:6.46.5在较小的那个数后,再添一位,如:6.41,6.42,6.436.49;

再添两位,如:6.411,6.412,6.413,有无数个。

22、小数点位置移动引起小数大小变化规律:

小数点向右:移动一位,小数就扩大到原数的10倍,原数

移动两位,小数就扩大到原数的100倍,原数

移动三位,小数就扩大到原数的1000倍,原数

小数点向左:移动一位,小数就缩小到原数的1/10,原数

移动两位,小数就缩小到原数的1/100,原数

移动三位,小数就缩小到原数的1/1000,原数1000;

23、一个数扩大到几倍,原数几。

一个数缩小到他的几分之一,原数几。

24、小数点移位问题:标上数字,不够用0占位。

25、名数的改写:

(1)低级单位的单名数改写成用小数表示的高级单位的单名数的方法:用这个数除以两个单位的进率,如果进率是10、100、1000可以直接把小数点向左移动相应的位数。10,左移一位;100,左移两位

(2)复名数改写成用小数表示的高级单位的单名数的方法:复名数中高级单位的数不动,作为小数的整数部分;把复名数中低级单位的数除以两个单位的进率,作为小数部分。

※:不同单位比较大小,先统一单位,再还原为原单位写成*。

(3)高级单位的单名数写成用低级单位的单名数的方法:用这个数乘两个单位的进率,如果进率是10、100、1000可以直接把小数点向右移动相应的位数。10,右移一位;100,右移两位

(4)用小数表示的高级单位的单名数改写成含有低级单位的复名数:小数的整数部分作为高级单位的数,小数的小数部分乘进率,移动小数点。

长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米

1米=10分米=100厘米=1000毫米

面积单位:1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米

质量单位:1吨=1000千克1千克=1000克

*币:1元=10角1角=10分1元=100分

26、求小数的近似数(四舍五入),就是看保留或精确到哪位的下一位的数,决定四舍五入。

保留整数,表示精确到个位,看十分位;保留一位小数,表示精确到十分位看百分位;保留两位小数,表示精确到百分位,看千分位。取近似数时,小数末尾的0不能去掉。

27、大数的改写。不是整万或整亿的数改写成用万或亿作单位的数。只要在万位或亿位的右下角点上小数点,并在小数的后面写上万字或亿字即可。再根据小数的*质,把小数末尾的0去掉。如果前面位数不够,用0占位。改写用=。

如果需要求近似数,根据要求保留小数。用。

28、※:一个两位小数,近似数是5.6,这个两位小数最大是多少?最小是多少?

最大:即在后面添4,所以是5.64。

最小:末尾对齐,保留小数点,减一,添5。所以是5.55。

(五)三角形:

1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。

2、三角形有三条边,三个内角,三个顶点。

3、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形有三条高。重点:三角形高的画法。

4、三角形的特*:稳定*。如:自行车的三角架,电线杆上的三角架。

5、三角形三边的关系:任意两边之和大于第三边(确定三条边能否组成三角形)。

6、三角形的分类:(1)按照角大小来分:锐角三角形,直角三角形,钝角三角形。

锐角三角形:三个角都是锐角的三角形。

直角三角形:有一个角是直角的三角形。

钝角三角形:有一个角是钝角的三角形。

(2)按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。

7、等边△的三边相等,每个角是60度。

8、等腰△,两腰等,两底角相等。是以底边上的高所在直线为对称轴的轴对称图形。

9、等腰三角形,求边长,求角度。

10、一个三角形中至少有两个锐角,每个三角形都至多有一个直角;每个三角形都至多有一个钝角。可以根据最大的角判断三角形的类型。最大的角是哪类角,就属于那类三角形。最大的角是直角,就是直角三角形。最大的角是钝角,就是钝角三角形。

11、三角形的内角和等于180度。四边形的内角和等于360度。有关度数的计算以及格式。

12、图形的拼组:

(1)当两个三角形有一条边长度相等时,就可以拼成四边形。

(2)两个相同的三角形一定能拼成一个平行四边形。并且将不同的等边重合,还可以拼出不同形状的四边形。

(3)用两个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

(4)用两个相同的等腰直角三角形可以拼成一个平行四边形、一个正方形、一个大的等腰直角三角形。

(5)三个相同的三角形能拼成梯形;三个相同的等腰三角形能拼成一个等腰梯形。

(6)至少需要两个三角形,才可以拼四边形。

(7)至少需要三个相同的三角形才可以拼梯形。

(8)多个三角形可以拼出各种美丽的图案。

13、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。

(六)小数的加减法:

1、计算法则:相同数位对齐(小数点对齐),末位算起,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。得数的末尾有零,一般把零去掉。结果是小数的要依据小数的*质进行化简。

2、※:16.5-13.81=2.69把16.516.50,笔算小数减法,当小数位数不够时,可以在小数末尾添上0,使两个小数位数相同后再相减。

3、竖式计算以及验算。注意横式上要写上*,不要写成验算的结果。

验算方法:a+b=c验算:ca=b

ab=c验算:b+c=a

4、整数的四则运算顺序和运算定律在小数中同样适用。(简算)

(七)统计:

(1)条形统计图:直观的反应数量的多少。

(2)折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。横轴和纵轴是垂直的两条射线。

(3)折线统计图的优点:各点可以看出数量的多少,折线可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。变化趋势是指:上升或下降。

(4)折线统计图,连接两点的线段越长,说明事物变化幅度越大,反之,连接两点的线段越短,说明事物变化幅度越小。

(八)数学广角:

(1)植树问题。

间隔数=总长度间隔长度总长=间隔长度间隔数

情况分类:【1】、两端都植:棵数=间隔数+1间隔数=棵树-1

2、一端植,一端不植:棵数=间隔数

3、两端都不植:棵数=间隔数-1间隔数=棵树+1

(2)锯木问题(两端都不植树的问题):段数=次数+1次数=段数-1总时间=每次时间次数

(3)方阵问题:最外层的数目是:边长4-4或者是(边长-1)4

整个方阵的总数目是:边长边长

(4)封闭的图形:(圆形、椭圆形、正方形、长方形)总长间距=间隔数棵树=间隔数

顶点有一棵

(5)上楼问题(看成两端都植树的问题):段数=楼数-1总时间=每段时间段数

(6)敲钟问题:间隔数=下数-1总时间=每下时间间隔数

[1]每份数份数=总数总数每份数=份数总数份数=每份数

[2]1倍数倍数=几倍数几倍数1倍数=倍数几倍数倍数=1倍数

[3]速度时间=路程路程速度=时间路程时间=速度

[4]单价数量=总价总价单价=数量总价数量=单价

[5]工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率

[6]加数+加数=和和-一个加数=另一个加数

[7]被减数-减数=差被减数-差=减数差+减数=被减数

[8]因数因数=积积一个因数=另一个因数

[9]被除数除数=商被除数商=除数商除数=被除

第5篇:小学五年级下册数学分数知识点整理

1、分数的意义和*质

分子比分母小的分数叫真分数,真分数小于1。

分子比分母大或分子和分母相等的分数叫假分数,假分数大于1或等于1。

把分数化为同它相等,但分子分母都比较小的分数叫做约分。约分应用了分数的基本*质。

分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分的根据是分数的基本*质。

=0.5=0.25=0.75=0.2=0.4=0.6=0.8

=0.125=0.375=0.625=0.875=0.05=0.04。

2、分数的加减法

同分母分数加减法:分母不变,只把分子相加减。

异分母分数加减法:先通分,再按照同分母分数加减法的方法进行计算。

带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

第6篇:数学四年级上第二章知识点归纳整理

1、大数的认识一定要四位分级

数级、数位和计数单位(表格很重要)分清计数单位和数位

大数的读法(关键是零的读法问题)

大数的写法

数拓展到三个数级

2、四舍五入法

估算,两位数估整十数,三位数估整百数,四位数估整千数。估算是看清计算符号。特别类似1500-500/50,有的人会去先算减法的。

凑整法

这里涉及的应用题有去尾法和进一法。

10个人坐车,每4人一辆车,一共需要几辆车?进一法,剩下2个人还需要一辆车。

每桶水中60千克,一辆载重2吨的卡车最多能装几桶水?去尾法,剩下的20千克的地方不能装60千克的一桶水。

3、面积单位

平方公里(平方千米)、平方米、平方分米、平方厘米、平方毫米

结合长度单位

复习周长和面积

要结合实际,让孩子对基本的长度和面积有概念。

4、重量单位

克、千克和吨

5、容积单位

毫升、升

这一章的难点在于:要结合实际,具体体会数量单位的多少和换算

单位要统一

周长和面积

其实最主要的是确定长和宽(正方形是边长)

1、长方形

面积=长*宽

周长=2*(长+宽)

已经知道面积和长(或宽),求周长或者另一边

长=面积:宽

(宽=面积/长)

周长=2(长+面积/长)=2(宽+面积/宽)

已经知道周和长(或宽),求面积或者另一边

长=周长/2-宽

宽=周长/2-长

面积=长*(周长/2-长)

=宽*(周长/2-宽)

2、正方形

面积=边长的平方

周长=4*边长

边长=面积开方(现在出现的平方数一般小,可用乘法口诀表算出)

边长=周长/4

长度单位和面积单位

1km=1000m

1m=10dm=100cm

1dm=10cm

1cm=10mm

1平方公里=1平方千米=1000000平方米

1平方米=100平方分米=10000平方厘米=1000000平方毫米

两数之和一定的时候,相差最小或者相等的时候,积最大。

也就是说,周长相等的长方形和正方形,正方形的面积最大(长方形长和宽相差越小,面积越大)两数积一定时,相差最大的时候,和最大。

也就是说,面积相等的长方形和正方形,长方形的周长最大(长方形长和宽相差越大,周长越大)