五年级数学上册《分数》知识点整理归纳
分数与除法
【知识点】:
理解分数与除法的关系:被除数除数=(除数不为0)。
分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。
运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。
根据分数与除法的关系把假分数化成带分数的方法。
用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。
把带分数化成假分数的方法。(两种)
把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。
将整数与分母相乘的积加上分子作分子,分母不变。
分数基本*质
【知识点】:
理解分数的基本*质。
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及商不变的规律,来理解分数的基本*质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本*质,把一个分数化成指定分母(或分子)而大小不变的分数。
找最大公因数
【知识点】:
理解公因数和最大公因数的意义。
两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。
找两个数的公因数和最大公因数的方法。
运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。
会找分子和分母的最大公因数。
补充【知识点】:
其他找最大公因数的方法。
找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。
例如:找15和50的公因数和最大公因数:
可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。
如果两个数是不同的质数,那么这两个数的公因数只有1。
如果两个数是连续的自然数,那么这两个数的公因数只有1。
如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。
也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)
4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。
约分
【知识点】:
理解约分的含义。
把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。
理解最简分数的含义。
像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。
掌握约分的方法。
约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。
补充【知识点】:
比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。
例如:○
找最小公倍数
【知识点】:
理解公倍数和最小公倍数的含义。
两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。
找两个数的公倍数和最小公倍数的方法。
先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。
两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。
补充【知识点】:
其他找公倍数和最小公倍数的方法。
找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。
例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。
如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。
如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。
如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。
也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)
分数的大小
【知识点】:
理解通分的含义。
把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。
通分的两个要点:
和原来分数相等。
分母相同的数字。
分数大小比较。
同分母分数相比较,分子越大分数越大。
同分子分数相比较,分母越小分数越大。
分子分母都不相同的分数相比较的方法。
用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。
是把两个分数化成分子相同的分数,再比较大小。
补充【知识点】:
通分一般以最小公倍数作分母。
数学与交通
相遇
【知识点】:
分析简单实际问题中的数量关系。
路程=速度时间
用方程解决简单的实际问题。
强调列方程解应用题的步骤:
(1)找到题中的等量关系式
(2)解设所求量为x
(3)根据等量关系式列出相应的方程
(4)解答方程,注意结果无单位名称。
(5)检验做答。
补充【知识点】:
速度=路程时间时间=路程速度
旅游费用
【知识点】:
会利用已有的知识,依据实际情况给出较经济的方案。
掌握用列表法解决问题。
看图找关系
【知识点】:
能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表的直观*。
结合实际问题情境,分析量与量之间的关系。
根据图的变化确定或描述行为、事件的变化。
第2篇:六年级数学上册分数乘法知识点归纳
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bcac+bc=(a+b)c
第3篇:五年级上册数学知识点的归纳梳理
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.61.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法②进一法③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.36361.587587
另一种是简写的方法:即只写出一组循环节,然后在循环节的靠前个数字和最后一个数上面点上圆点。如:12.
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
第4篇:小学数学四年级下册知识点整理归纳
(一)四则运算:
1、四则运算运算顺序:
(1)、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。
(2)、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。
(3)、算式里有括号时,要先算括号里面的,再算括号外面的。(小括号起到改变运算顺序的作用)。
2、加法、减法、乘法和除法统称为四则运算。
3、有关0的运算:
(1)一个数加上0得原数。a+0=a
(2)一个数减去零还得原数。a-0=a
(3)任何一个数乘0得0。a0=0
(4)0除以一个非0的数等于0。0a=0(a0).0不能做除数,0作除数没有意义。
4、被减数等于减数,差是0.a-b=0a=b
5、※:除和除以不同。a除以b,写成ab。a除b,写成ba。
6、※:列综合算式时,如果含有乘除法或加减法时,必须先算加减法,一定要给加减法加上小括号。如:章师傅要生产600个零件,已经生产了120个,剩下的要十天完成,平均每天生产多少个?
(600-120)10=48(个)
7、※:把两个算式合并成一个综合算式:找相同数替换,把含有相同数结果的算式往里代。
如:59+80=139和3204=80列综合算式,80两个算式都有,把第二个含有相同数结果的算式往靠前个里代,59+3204。
如:76-52=24,244=6合成()
8、※:填□,列综合,从最后一步入手。
如:77+23
﹨∕
25□
/
□
25(77+23)
(二)位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
2、位置间的相对*。会描述两个物体间的相互位置关系。
※:(1)怎样判断观测点:要指出一个物体的位置,必须以另一个物体为参照物。以谁为参照物,就以谁为观测点。以谁为观测点,就以谁为中心画出方向标。
如:甲在乙北偏东30方向上,乙为参照物,以乙为观测点。在后面的地点是观测点。
如:小芳家琳琳家,小芳家为参照物,以小芳家为观测点。
※:(2)北偏东30,角度北偏向东,夹角靠近北面。
※:(3)两位置相对*,以这两个不同地点为观测点,描述对方所在地的方向时,方向正好相反(东西,北南,东偏北西偏南)。如:b在a的西偏北30,那么a在b的东偏南30。
3、在平面图上标明物*置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具*置,标名称。
4、描述路线图时,要先按行走路线,确定每一个观测点,然后,以每一个观测点为参照物,描述到下一个目标行走的方向和路程。
5、简单路线图的绘制。
(三)运算定律及简便运算:
1、加法运算定律:
(1)、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
(2)、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上靠前个数,和不变。(a+b)+c=a+(b+c)
※:交换律改变的是数的位置,结合律改变的是运算顺序。结合律的标志是小括号的应用。
2、乘法运算定律:
(1)、乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba
(2)、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以靠前个数,积不变。(ab)c=a(bc)
※:特殊数的乘积:52=10254=1001258=1000258=200754=300
※:在乘法中,如果一个因数是25或125,另一个因数正好是4或8的倍数,就将另一个因数分解成4或8与其他数乘积的形式,再利用乘法结合律先算254或1258.
(3)、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)c=ac+bc
拓展1:(a-b)c=ac-bc
拓展2:(abc)m=ambmcm
拓展3:(a+b+c)m=am+bm+cm
拓展4:(a-b)c=ac-bc
※:注意如果乘法算式,可以找出相同的因数时,逆用乘法分配律。
acbc=(ab)c
acbc=(ab)c
※:乘法分配律是乘、加两种运算的规律。乘法交换律、乘法结合律只是乘法运算。简算时,判断用哪种定律。
3、连减的*质:
(1)一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
(2)在连减运算中,任意交换减数的位置,差不变。a-b-c=a-cb
※:在加法或减法计算中,当某个数接近整十、整百或整千时,可以把这个数先当成整十、整百或整千的数进行加减,对于原数与整十、整百、整千相差的数,要根据多加要减去,少加还要加,多减要加上,少减还要减的原则进行处理。
如:多减要加上762-598=762-600+2=162+2=164
少减还要减768-303=768-300-3=468-3=465
多加要减去156+43=156+44-1=200-1=199
少加还要加145+156=145+155+1=300+1=301
4、连除的*质:
(1)一个数连续除以两个数,等于除以这两个数的积。abc=a(bc)
(2)一个数连续除以几个数,任意交换除数的位置,商不变。abcd=adbc
5、有关简算的拓展(另附纸):
10238-382125253212588
3.25+1.9810.32-1.983796+373+37
易错的情况:0.6+0.4-0.6+0.43899+99
(四)小数的意义和*质:
1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。把单位1平均分成10份,100份,1000份这样的一份或几份可以用分母是10、100、1000的分数来表示,也可以用小数表示。
2、小数是十进制分数的另一种表现形式。
3、十分之几、百分之几、千分之几的分数可以用小数来表示。
4、小数分数的转化:
(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。它的计数单位是十分之一。
(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。它的计数单位是百分之一。
(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。它的计数单位是千分之一。
5、小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.001
6、每相邻两个计数单位间的进率是10。
7、一个小数里有多少个计数单位的问题:如:0.678里有()个0.001。0.678写成分数是678/1000,因为678/1000中有678个1/1000,所以0.678里有678个0.001。
8、数位上的各个数表示什么含义。下面数中8的意思:8.36(8个一);3.86(8个0.1)等等。
9、几位小数,是指小数部分含有几位数的小数。
10、小数由整数部分、小数点、小数部分组成的。
11、默写小数的数位顺序表(在数位顺序表中,每相邻两个计数单位间的进率是10)。。
12、整数部分的最低位是个位,没有最高位;小数部分的最高位是十分位,没有最低位。因此没有最大的小数,也没有最小的小数。
13、※:给几个数字,根据要求写数。如:用6、0、2、4按要求写数。最大的一位小数:642.0最小的两位小数:20.46最大的三位小数:6.420
14、小数的读法:整数部分按照整数读法来读,再读小数点,小数部分要顺次读出每一个数。(整数部分是0的小数,整数部分就读0;小数部分有几个0就读出几个0.)
15、小数的写法:整数部分按照整数的写法来写,整数部分是0就写0,再在个位的右下角点小数点;小数部分依次写出每一个数。
16、※:最有最大的一位小数,最小的一位小数是0.1。
17、小数的*质:小数的末尾添上0或去掉0,小数的大小不变。作用可以化简小数等。
注意:小数中间的0不能去掉。
取近似数时有一些末尾的0不能去掉。(小数的末尾是指小数的最低位)。
18、增加小数位数及改写整数为小数的方法:增加小数位数,不改变小数的大小,只在小数的末尾添上0。整数改为小数,首先在整数右下角点上小数点,然后根据需要,添上相应个数的0。
19、小数大小比较(排成竖列,小数点对齐):先比较整数部分,整数部分相同比较十分位,十分位相同比较百分位,小数的大小和数位多少无关。如:3.7896和37.8.
20、※:两个整数或小数之间,如果没有小数位数的限制,他们之间的小数有无数个。
21、两数之间填数:6.46.5在较小的那个数后,再添一位,如:6.41,6.42,6.436.49;
再添两位,如:6.411,6.412,6.413,有无数个。
22、小数点位置移动引起小数大小变化规律:
小数点向右:移动一位,小数就扩大到原数的10倍,原数
移动两位,小数就扩大到原数的100倍,原数
移动三位,小数就扩大到原数的1000倍,原数
小数点向左:移动一位,小数就缩小到原数的1/10,原数
移动两位,小数就缩小到原数的1/100,原数
移动三位,小数就缩小到原数的1/1000,原数1000;
23、一个数扩大到几倍,原数几。
一个数缩小到他的几分之一,原数几。
24、小数点移位问题:标上数字,不够用0占位。
25、名数的改写:
(1)低级单位的单名数改写成用小数表示的高级单位的单名数的方法:用这个数除以两个单位的进率,如果进率是10、100、1000可以直接把小数点向左移动相应的位数。10,左移一位;100,左移两位
(2)复名数改写成用小数表示的高级单位的单名数的方法:复名数中高级单位的数不动,作为小数的整数部分;把复名数中低级单位的数除以两个单位的进率,作为小数部分。
※:不同单位比较大小,先统一单位,再还原为原单位写成*。
(3)高级单位的单名数写成用低级单位的单名数的方法:用这个数乘两个单位的进率,如果进率是10、100、1000可以直接把小数点向右移动相应的位数。10,右移一位;100,右移两位
(4)用小数表示的高级单位的单名数改写成含有低级单位的复名数:小数的整数部分作为高级单位的数,小数的小数部分乘进率,移动小数点。
长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米
1米=10分米=100厘米=1000毫米
面积单位:1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1公顷=10000平方米
质量单位:1吨=1000千克1千克=1000克
*币:1元=10角1角=10分1元=100分
26、求小数的近似数(四舍五入),就是看保留或精确到哪位的下一位的数,决定四舍五入。
保留整数,表示精确到个位,看十分位;保留一位小数,表示精确到十分位看百分位;保留两位小数,表示精确到百分位,看千分位。取近似数时,小数末尾的0不能去掉。
27、大数的改写。不是整万或整亿的数改写成用万或亿作单位的数。只要在万位或亿位的右下角点上小数点,并在小数的后面写上万字或亿字即可。再根据小数的*质,把小数末尾的0去掉。如果前面位数不够,用0占位。改写用=。
如果需要求近似数,根据要求保留小数。用。
28、※:一个两位小数,近似数是5.6,这个两位小数最大是多少?最小是多少?
最大:即在后面添4,所以是5.64。
最小:末尾对齐,保留小数点,减一,添5。所以是5.55。
(五)三角形:
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、三角形有三条边,三个内角,三个顶点。
3、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形有三条高。重点:三角形高的画法。
4、三角形的特*:稳定*。如:自行车的三角架,电线杆上的三角架。
5、三角形三边的关系:任意两边之和大于第三边(确定三条边能否组成三角形)。
6、三角形的分类:(1)按照角大小来分:锐角三角形,直角三角形,钝角三角形。
锐角三角形:三个角都是锐角的三角形。
直角三角形:有一个角是直角的三角形。
钝角三角形:有一个角是钝角的三角形。
(2)按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
7、等边△的三边相等,每个角是60度。
8、等腰△,两腰等,两底角相等。是以底边上的高所在直线为对称轴的轴对称图形。
9、等腰三角形,求边长,求角度。
10、一个三角形中至少有两个锐角,每个三角形都至多有一个直角;每个三角形都至多有一个钝角。可以根据最大的角判断三角形的类型。最大的角是哪类角,就属于那类三角形。最大的角是直角,就是直角三角形。最大的角是钝角,就是钝角三角形。
11、三角形的内角和等于180度。四边形的内角和等于360度。有关度数的计算以及格式。
12、图形的拼组:
(1)当两个三角形有一条边长度相等时,就可以拼成四边形。
(2)两个相同的三角形一定能拼成一个平行四边形。并且将不同的等边重合,还可以拼出不同形状的四边形。
(3)用两个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
(4)用两个相同的等腰直角三角形可以拼成一个平行四边形、一个正方形、一个大的等腰直角三角形。
(5)三个相同的三角形能拼成梯形;三个相同的等腰三角形能拼成一个等腰梯形。
(6)至少需要两个三角形,才可以拼四边形。
(7)至少需要三个相同的三角形才可以拼梯形。
(8)多个三角形可以拼出各种美丽的图案。
13、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
(六)小数的加减法:
1、计算法则:相同数位对齐(小数点对齐),末位算起,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。得数的末尾有零,一般把零去掉。结果是小数的要依据小数的*质进行化简。
2、※:16.5-13.81=2.69把16.516.50,笔算小数减法,当小数位数不够时,可以在小数末尾添上0,使两个小数位数相同后再相减。
3、竖式计算以及验算。注意横式上要写上*,不要写成验算的结果。
验算方法:a+b=c验算:ca=b
ab=c验算:b+c=a
4、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
(七)统计:
(1)条形统计图:直观的反应数量的多少。
(2)折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。横轴和纵轴是垂直的两条射线。
(3)折线统计图的优点:各点可以看出数量的多少,折线可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。变化趋势是指:上升或下降。
(4)折线统计图,连接两点的线段越长,说明事物变化幅度越大,反之,连接两点的线段越短,说明事物变化幅度越小。
(八)数学广角:
(1)植树问题。
间隔数=总长度间隔长度总长=间隔长度间隔数
情况分类:【1】、两端都植:棵数=间隔数+1间隔数=棵树-1
2、一端植,一端不植:棵数=间隔数
3、两端都不植:棵数=间隔数-1间隔数=棵树+1
(2)锯木问题(两端都不植树的问题):段数=次数+1次数=段数-1总时间=每次时间次数
(3)方阵问题:最外层的数目是:边长4-4或者是(边长-1)4
整个方阵的总数目是:边长边长
(4)封闭的图形:(圆形、椭圆形、正方形、长方形)总长间距=间隔数棵树=间隔数
顶点有一棵
(5)上楼问题(看成两端都植树的问题):段数=楼数-1总时间=每段时间段数
(6)敲钟问题:间隔数=下数-1总时间=每下时间间隔数
[1]每份数份数=总数总数每份数=份数总数份数=每份数
[2]1倍数倍数=几倍数几倍数1倍数=倍数几倍数倍数=1倍数
[3]速度时间=路程路程速度=时间路程时间=速度
[4]单价数量=总价总价单价=数量总价数量=单价
[5]工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率
[6]加数+加数=和和-一个加数=另一个加数
[7]被减数-减数=差被减数-差=减数差+减数=被减数
[8]因数因数=积积一个因数=另一个因数
[9]被除数除数=商被除数商=除数商除数=被除
第5篇:小学五年级下册数学分数知识点整理
1、分数的意义和*质
分子比分母小的分数叫真分数,真分数小于1。
分子比分母大或分子和分母相等的分数叫假分数,假分数大于1或等于1。
把分数化为同它相等,但分子分母都比较小的分数叫做约分。约分应用了分数的基本*质。
分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分的根据是分数的基本*质。
=0.5=0.25=0.75=0.2=0.4=0.6=0.8
=0.125=0.375=0.625=0.875=0.05=0.04。
2、分数的加减法
同分母分数加减法:分母不变,只把分子相加减。
异分母分数加减法:先通分,再按照同分母分数加减法的方法进行计算。
带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
第6篇:数学四年级上第二章知识点归纳整理
1、大数的认识一定要四位分级
数级、数位和计数单位(表格很重要)分清计数单位和数位
大数的读法(关键是零的读法问题)
大数的写法
数拓展到三个数级
2、四舍五入法
估算,两位数估整十数,三位数估整百数,四位数估整千数。估算是看清计算符号。特别类似1500-500/50,有的人会去先算减法的。
凑整法
这里涉及的应用题有去尾法和进一法。
10个人坐车,每4人一辆车,一共需要几辆车?进一法,剩下2个人还需要一辆车。
每桶水中60千克,一辆载重2吨的卡车最多能装几桶水?去尾法,剩下的20千克的地方不能装60千克的一桶水。
3、面积单位
平方公里(平方千米)、平方米、平方分米、平方厘米、平方毫米
结合长度单位
复习周长和面积
要结合实际,让孩子对基本的长度和面积有概念。
4、重量单位
克、千克和吨
5、容积单位
毫升、升
这一章的难点在于:要结合实际,具体体会数量单位的多少和换算
单位要统一
周长和面积
其实最主要的是确定长和宽(正方形是边长)
1、长方形
面积=长*宽
周长=2*(长+宽)
已经知道面积和长(或宽),求周长或者另一边
长=面积:宽
(宽=面积/长)
周长=2(长+面积/长)=2(宽+面积/宽)
已经知道周和长(或宽),求面积或者另一边
长=周长/2-宽
宽=周长/2-长
面积=长*(周长/2-长)
=宽*(周长/2-宽)
2、正方形
面积=边长的平方
周长=4*边长
边长=面积开方(现在出现的平方数一般小,可用乘法口诀表算出)
边长=周长/4
长度单位和面积单位
1km=1000m
1m=10dm=100cm
1dm=10cm
1cm=10mm
1平方公里=1平方千米=1000000平方米
1平方米=100平方分米=10000平方厘米=1000000平方毫米
两数之和一定的时候,相差最小或者相等的时候,积最大。
也就是说,周长相等的长方形和正方形,正方形的面积最大(长方形长和宽相差越小,面积越大)两数积一定时,相差最大的时候,和最大。
也就是说,面积相等的长方形和正方形,长方形的周长最大(长方形长和宽相差越大,周长越大)