小学四年级奥数题牛吃草

综合 2024-10-23 03:07:10

用“牛吃草”思路解题三步骤:

1、求草速2、求原草量3、求问题

等量关系:总草量=原草量+新长出的草

例1:牧场上有一片青草,每天匀速生长,这片草地可供24头牛吃6周,或可供18头牛吃10周,问可供19头牛吃多少周?

先求草速:

再求原草量:

最后求问题:

①一片草地可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃多少天?

②一片草地可供27头牛吃6天,或可供23头牛吃9天,问可供21头牛吃多少天?

例2:有一片青草,每天匀速生长,这片草地可供8头牛吃20天,或可供14头牛吃10天,问如果要在12天内吃完牧草,需要几头牛?

①有一片青草,每天匀速生长,这片草地可供40头牛吃10天,或可供30头牛吃20天,那么可供几头牛吃12天?

②由于天渐冷,牧场上的草不仅不长,反而以固定的速度减少,已知草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么可供几头牛吃10天?

③有口井连续不断涌出泉水,每分涌出水量相等,如果用4架抽水机来抽水,40分钟可抽完,如果用5架抽水机30分钟抽完,现在要在24分钟内抽完,需抽水机多少架?

例3:有一片青草,每天匀速生长,这片草地可供20头牛吃12天,或可供60只羊牛吃24天,如果一头牛吃草量等于4只羊的吃草量,那么12头牛与88只羊在一起吃可以吃几天?

①一片青草,每天匀速生长,这片草地可供10头牛吃20天,或可供60只羊吃10天,如果一头牛吃草量等于4只羊的吃草量。那么10头牛与60羊一起吃,可以吃几天?

②一只船有了漏洞,水以均匀的速度进入船内,当人们发现时,已经漏进了一些水。此时如果派12人往外舀水,3小时可以舀完;如果派5人舀水,10小时才能舀完。现在想用2小时把水舀完,需用多少人参加舀水?

例4:有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完,现有若干头牛吃了6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头?

①有一牧场,8头牛20天可将草吃完,14头牛则10天可将草吃完,现有若干头牛吃了4天后又增加6头,这样又吃了2天便将草吃完,问原来有牛多少头?

②某商店自动扶梯以均匀速度由下往上行驶,两个*急的孩子要从扶梯上楼,已知男孩每分钟走20级,女孩每分钟走15级,结果男孩用5分钟到楼上,女孩用6分钟到楼上,问扶梯共有多少级?

例5:某公园早上7点开门,但开门前已来了不少人,游客还在以匀速增加,若每分钟进6人,则7点30分门口才没有人排队,若每分钟进9人,则到7点12分就没人排队,现要求开门后5分钟门口就没有人排队,每分钟应放多少人?

①某体育馆举行篮球赛,晚上7点半比赛,但6点半开门时门口已有不少球迷排队,如果10个门都打开,每个门每分钟进9人,则30分钟后门口无人排队,如果10个门都打开,每个门每分钟进10人,则15分钟,无人排队,现在要求在开门5分钟后无人排队,每个门每分进几人?

②假设地球上新生成的资源的增加速度是固定不变的,照这样计算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为使人类有不断发展的潜力,问地球最多能养活多少人?

第2篇:“牛吃草”奥数问题

例4一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?

分析由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。

解:60只羊每天吃草量相当多少头牛每天的吃草量?

60÷4=15(头)。

草地原有草量与20天新生长草量可供多少头牛吃一天?

16×20=320(头)。

80只羊12天的吃草量供多少头牛吃一天?

(80÷4)×12=240(头)。

每天新生长的草够多少头牛吃一天?

(320-240)÷(20-12)=10(头)。

原有草量够多少头牛吃一天?

320-(20×10)=120(头)。

原有草量可供10头牛与60只羊吃几天?

120÷(60÷4+10-10)=8(天)。

答:这块草场可供10头牛和60只羊吃8天。

例5一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?

解:水库原有的水与20天流入水可供多少台抽水机抽1天?20×5=100(台)。

水库原有的水与15天流入的水可供多少台抽水机抽1天?6×15=90(台)。

每天流入的水可供多少台抽水机抽1天?

(100-90)÷(20-15)=2(台)。

原有的水可供多少台抽水机抽1天?

100-20×2=60(台)。

若6天抽完,共需抽水机多少台?

60÷6+2=12(台)。

答:若6天抽完,共需12台抽水机。

例6有三片草场,每亩原有草量相同,草的生长速度?

设第三片草场(24亩)可供x头牛18周吃完,则由每头牛每周吃草量可列出方程为:

答:第三片草场可供36头牛18周食用。

这道题列方程时引入a、b两个辅助未知数.在解方程时不一定要求出其数值,在本题中只需求出它们的比例关系即可。

第3篇:牛吃草小学四年级奥数题及*:

做奥数题有助于我们能力的提升,不仅在数学方面,其他方面也是很有帮助的,主要是让我们多动脑思考。下面为大家分享四年级奥数题,我们一定要坚持每天做奥数题来填充自己的实力!

牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?

*与解析:

设1头牛1天的吃草量为“1”,10头牛吃20天共吃了10×20=200份;15头牛吃10天共吃了15×10=150份.靠前种吃法比第二种吃法多吃了200-150=50份草,这50份草是牧场的草20-10=10天生长处来的,所以每天生长的草量为50÷10=5,那么原有草量为:200-5×20=100.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100÷20=5(天)可将原有牧草吃完,即可供25头牛吃5天.

第4篇:小学奥数牛吃草问题

有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?

考点:牛吃草问题.

分析:假设打开一根出水管每小时可排水“1份”,那么8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份);两种情况比较,可知3小时内进水管放进的水是30-24=6(份);进水管每小时放进的水是6÷3=2(份);在4.5小时内,池内原有的水加上进水管放进的水,共有8×3+(4.5-3)×2=27(份).由此解答即可.

解:设打开一根出水管每小时可排出水“1份”,8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份).

30-24=6(份),这6份是“6-3=3”小时内进水管放进的水.

(30-24)÷(6-3)=6÷3=2(份),这“2份”就是进水管每小时进的水.

[8×3+(4.5-3)×2]÷4.5

=[24+1.5×2]÷4.5

=27÷4.5

=6(根)

答:需同时打开6根出水管.

点评:此题属于牛吃草问题,解答关键是把打开一根出水管每小时可排水“1份”,进一步分析推理求解.

第5篇:小学四年级奥数题牛吃草

牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?

*与解析:

设1头牛1天的吃草量为“1”,10头牛吃20天共吃了10×20=200份;15头牛吃10天共吃了15×10=150份.靠前种吃法比第二种吃法多吃了200-150=50份草,这50份草是牧场的草20-10=10天生长处来的,所以每天生长的草量为50÷10=5,那么原有草量为:200-5×20=100.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100÷20=5(天)可将原有牧草吃完,即可供25头牛吃5天.

第6篇:小学五年级牛牛吃草奥数题

牛牛吃草:(中等难度)

牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周.如果牧草每周匀速生长,可供21头牛吃几周?

牛牛吃草*:

可供21头牛吃12周

27头牛6周吃的草可供多少头牛吃一周? 27×6=162

23头牛9周吃的草可供多少头牛吃一周? 23×9=207

(9-6)周新长的草可供多少头牛吃一周?207-162=45

一周新长的草可供多少头牛吃一周? 45÷3=15

原有的草可供多少头牛吃一周? 162-15×6=72或207-15×9=72

21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?

72÷(21-15)=12