六年级数学上册分数乘法的知识点归纳

综合 2024-10-22 13:32:33

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bcac+bc=(a+b)c

第2篇:六年级数学上册分数乘法的知识点归纳

分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少?1/3×5表示求5个1/3的和是多少?

2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)

4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、乘法中比较大小的规律

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc

二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。

2、找单位“1”:单位“1”在分率句中分率的前面;

或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:

(1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“=”

(2)分率前是“的”字:用单位“1”的量×分率=具体量

例如:甲数是20,甲数的1/3是多少?列式是:20×1/3

4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

(比少):单位“1”的量×(1-分率)=具体量;

例如:甲数是50,乙数比甲数少1/2,乙数是多少?

列式是:50×(1-1/2)

(比多):单位“1”的量×(1+分率)=具体量

例如:小红有30元钱,小明比小红多3/5,小红有多少钱?

列式是:50×(1+3/5)

3、求一个数的几倍是多少:用一个数×几倍;

4、求一个数的几分之几是多少:用一个数×几分之几。

5、求几个几分之几是多少:用几分之几×个数

6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)

(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)

只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的六年级数学上册分数乘法知识点,能帮助大家迅速提高数学成绩!

第3篇:小学五年级数学分数乘法知识点归纳

分数乘法(一)

知识点:

1、理解分数乘整数的意义。分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法。分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

3、计算时,可以先约分在计算。

分数乘法(二)

知识点:

1、结合具体情境,进一步探索并理解分数乘整数的意义,并能正确进行计算。

2、能够求一个数的几分之几是多少。

3、理解打折的含义。例如:九折,是指现价是原价的十分之九。

分数乘法(三)

知识点:

1、分数乘分数的计算方法,并能正确进行计算。

分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。

2、比较分数相乘的积与每一个乘数的大小。

真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。

第4篇:分数乘法小学六年级数学上册知识点

一、分数乘法

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bcac+bc=(a+b)c

二、分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

2、求一个数的几倍:一个数几倍;求一个数的几分之几是多少:一个数。

3、写数量关系式技巧:

(1)“的”相当于“”“占”、“是”、“比”相当于“=”

(2)分率前是“的”:单位“1”的量分率=分率对应量

(3)分率前是“多或少”的意思:单位“1”的量(1分率)=分率对应量

三、倒数

1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1;0没有倒数。因为11=1;0乘任何数都得0,(分母不能为0)

4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第5篇:五年级数学上册《分数》知识点整理归纳

分数与除法

【知识点】:

理解分数与除法的关系:被除数除数=(除数不为0)。

分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。

运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。

把带分数化成假分数的方法。(两种)

把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。

将整数与分母相乘的积加上分子作分子,分母不变。

分数基本*质

【知识点】:

理解分数的基本*质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

联系分数与除法的关系以及商不变的规律,来理解分数的基本*质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

运用分数的基本*质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数

【知识点】:

理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。

会找分子和分母的最大公因数。

补充【知识点】:

其他找最大公因数的方法。

找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:

可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。

如果两个数是不同的质数,那么这两个数的公因数只有1。

如果两个数是连续的自然数,那么这两个数的公因数只有1。

如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。

也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)

4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。

约分

【知识点】:

理解约分的含义。

把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

理解最简分数的含义。

像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。

掌握约分的方法。

约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。

补充【知识点】:

比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。

例如:○

找最小公倍数

【知识点】:

理解公倍数和最小公倍数的含义。

两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。

找两个数的公倍数和最小公倍数的方法。

先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。

两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。

补充【知识点】:

其他找公倍数和最小公倍数的方法。

找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。

例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。

如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。

也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)

分数的大小

【知识点】:

理解通分的含义。

把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。

通分的两个要点:

和原来分数相等。

分母相同的数字。

分数大小比较。

同分母分数相比较,分子越大分数越大。

同分子分数相比较,分母越小分数越大。

分子分母都不相同的分数相比较的方法。

用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。

是把两个分数化成分子相同的分数,再比较大小。

补充【知识点】:

通分一般以最小公倍数作分母。

数学与交通

相遇

【知识点】:

分析简单实际问题中的数量关系。

路程=速度时间

用方程解决简单的实际问题。

强调列方程解应用题的步骤:

(1)找到题中的等量关系式

(2)解设所求量为x

(3)根据等量关系式列出相应的方程

(4)解答方程,注意结果无单位名称。

(5)检验做答。

补充【知识点】:

速度=路程时间时间=路程速度

旅游费用

【知识点】:

会利用已有的知识,依据实际情况给出较经济的方案。

掌握用列表法解决问题。

看图找关系

【知识点】:

能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表的直观*。

结合实际问题情境,分析量与量之间的关系。

根据图的变化确定或描述行为、事件的变化。

第6篇:六年级数学第二单元分数乘法常考知识点归纳

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:分数乘整数指的是第二个因数必须是整数,不能是分数。

例如:7表示:求7个的和是多少?或表示:的7倍是多少?

2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:一个数乘分数指的是第二个因数必须是分数,不能是整数。(靠前个因数是什么都可以)

例如:表示:求的是多少?

9表示:求9的是多少?

a表示:求a的是多少?

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)

(4)分数的基本*质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。ab=c,当b1时,ca.

一个数(0除外)乘小于1的数,积小于这个数。ab=c,当b1时,c

一个数(0除外)乘等于1的数,积等于这个数。ab=c,当b=1时,c=a.

注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

附:形如的分数可折成()

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:a(bc)=abac

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的较早标准是:两数相乘的积是否为1。

例如:ab=1则a、b互为倒数。

3、求倒数的方法:

①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为11=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、任意数a(a0),它的倒数为;非零整数a的倒数为;分数的倒数是。

6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

(六)分数乘法应用题用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

1=

例如:求25的是多少?列式:25=15

甲数的等于乙数,已知甲数是25,求乙数是多少?列式:25=15

注:已知单位1的量,求单位1的量的几分之几是多少,用单位1的量与分数相乘。

2、(什么)是(什么)的。

()=(1)

例1:已知甲数是乙数的,乙数是25,求甲数是多少?

甲数=乙数即25=15

注:(1)是的字中间的量乙数是的单位1的量,即是把乙数看作单位1,把乙数平均分成5份,甲数是其中的3份。

(2)是占比这三个字都相当于=号,的字相当于。

(3)单位1的量分率=分率对应的量

例2:甲数比乙数多(少),乙数是25,求甲数是多少?

甲数=乙数乙数即2525=25(1)=40(或10)

3、巧找单位1的量:在含有分数(分率)的语句中,分率前面的量就是单位1对应的量,或者占是比字后面的量是单位1。

4、什么是速度?

速度是单位时间内行驶的路程。速度=路程时间时间=路程速度路程=速度时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

5、求甲比乙多(少)几分之几?

多:(甲-乙)乙

少:(乙-甲)乙