小学六年级数学总复习资料的知识点

综合 2024-10-11 12:11:16

常用的数量关系式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学图形计算公式

1、正方形(c:周长s:面积a:边长)

周长=边长×4c=4a面积=边长×边长s=a×a

2、正方体(v:体积a:棱长)

表面积=棱长×棱长×6s表=a×a×6

体积=棱长×棱长×棱长v=a×a×a

3、长方形(c:周长s:面积a:边长)

周长=(长+宽)×2c=2(a+b)

面积=长×宽s=ab

4、长方体(v:体积s:面积a:长b:宽h:高)

(1)表面积(长×宽+长×高+宽×高)×2s=2(ab+ah+bh)

(2)体积=长×宽×高v=abh

5、三角形(s:面积a:底h:高)

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6、平行四边形(s:面积a:底h:高)

面积=底×高s=ah

7、梯形(s:面积a:上底b:下底h:高)

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8、圆形(s:面积c:周长лd=直径r=半径)

(1)周长=直径×л=2×л×半径c=лd=2лr

(2)面积=半径×半径×л

9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2

(3)体积=底面积×高(4)体积=侧面积÷2×半径

圆锥体(v:体积h:高s:底面积r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

13、和倍问题

和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)

14、差倍问题

差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)

15、相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

第2篇:小学数学知识点分数的复习资料

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本*质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小。

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本*质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

第3篇:小学六年级数学整数知识点总复习

整数

1整数的意义

自然数和0都是整数。

2自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。0也是自然数。

3计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除

整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……

3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

第4篇:九年级数学下册知识点复习资料

锲而舍之,朽木不折;锲而不舍,金石可镂。以下就是应届毕业生考试网为同学们搜集的九年级数学下册知识点复习资料。希望同学们学习进步。

经过圆心的弦是直径;

圆上任意两点间的部分叫做圆弧,简称弧;

圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;

大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;

由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,d>R_+r;

(2)当两圆相外切时,d=R_+r;

(3)当两圆相交时,R_-r

(4)当两圆内切时,d=R_-r(R>r);

(4)当两圆内含时,d

其中,d为圆心距,R、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:

(1)到一定点的距离相等的n个点在同一个圆上;

(2)同斜边的直角三角形的各顶点共圆;

(3)同底同侧相等角的三角形的各顶点共圆;

(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;

(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;

(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;

(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若PA_*PB=PC_*PD,则它的四个顶点共圆。

1、作直径上的圆周角

当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一

条件来*问题.

2、作弦心距

当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件*问题.

3、过切点作半径

当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一*

质来*问题.

4、作直径

当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这

一*质来*问题.

5、作公切线

当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切

线找到两圆之间的关系.

6、作公共弦

当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找

出两圆的角之间的关系.

7、作两圆的连心线

若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直

平分公共弦或;两相切圆的连心线必过切点来*问题.

8、作圆的切线

若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利

用弦切角定理来*问题.

9、一圆过另一圆的圆心时则作半径

题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,

还可以通过作圆的半径,利用同圆的半径相等来*问题.

10、作辅助圆

当题中涉及到圆的切线问题(无论是计算还是*)时,通常需要作辅助线。一般地,

有以下几种添加辅助线的作法:

(1)已知一直线是圆的切线时,通常连结圆心和切点,使这条半径垂直于切线.

(2)若已知直线经过圆上的某一点,需要*某条直线是圆的切线时,往往需要作出经

过这一点的半径,*直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公

共点没有确定,则需要过圆心作直线的垂线,得到垂线段,再通过*这条垂线段的长等

于半径,来*某条直线是圆的切线.简记为“作垂直,证半径”.

1.九年级数学下册二次函数检测试题

2.人教版九年级下册数学练习题

3.九年级数学下第二次月考考试题

4.九年级数学下册知识点复习资料

5.九年级数学下靠前月度试题

6.2017九年级数学下册靠前单元测试题

7.九年级下册数学单元测试题

8.九年级下册数学第二章检测试题

9.初中九年级数学下册知识点

10.九年级数学下二次函数质量检测试题

第5篇:大学数学知识点:线*代数复习资料

导语:在复习线*代数的时候应该将重点放在对基本概念的理解上,做到掌握基本定理的条件、结论及其应用、各种运算规律及基本题型的计算方法等。下面是小编为您收集整理的资料,希望对您有所帮助。

靠前章行列式

本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。数值型行列式的计算不会以单独题目的形式考查,但是在解决线*方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。

因此,在复习期间行列式这块要做到利用行列式的*质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算。另外还要会综合后面的知识会计算简单的抽象行列式的值。

第二章矩阵

本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关*质也很重要,也是需要掌握的。除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:

1、矩阵的符号运算

2、具体矩阵的数值运算

矩阵的符号运算就是利用相关矩阵的*质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。

第三章向量

本章的重点有:

1、向量组的线*相关**、线*表出等问题,解决此类问题的关键在于深刻理解向量组的线*相关*概念,掌握线*相关*的几个相关定理,另外还要注意推证过程中逻辑的正确*,还要善于使用反证法。

2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线*无关组以及向量组或者矩阵的秩。

第四章线*方程组

本章的重点是利用向量这个工具解决线*方程组解的判定及解的结构问题。题目基本没有难度,但是大家在复习的时候要注意将向量与线*方程组两章的知识内容联系起来,学会融会贯通。

第五章特征值与特征向量

本章的基本要求有三点:

1、要会求特征值、特征向量

对于具体给定的数值型矩阵,一般方法是通过特征方程?λE-A?=0求出特征值,然后通过求解齐次线*方程组(λE-A)ξ=0的非零解得出对应特征值的特征向量,而对于抽象的矩阵来说,在求特征值时主要考虑利用定义Aξ=λξ,另外还要注意特征值与特征向量的*质及其应用。

2、矩阵的相似对角化问题

要求掌握一般矩阵相似对角化的条件,但是重点是实对称矩阵的相似对角化,即实对称矩阵的正交相似于对角阵。这块的知识出题比较灵活,可直接出题,也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A。另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出矩阵A。

3、相似对角化之后的应用,主要是利用矩阵的相似对角化计算行列式或者求矩阵的方幂。

第六章二次型

二次型这一章的重点实质还是实对称矩阵的正交相似对角化问题。这一章节要求大家掌握二次型的矩阵表示,用矩阵的方法研究二次型的问题主要有两个:

1、化二次型为标准形

主要是利用正交变换法化二次型为标准型,这是考研数学线*代数的重点大题题型,考生一定要掌握其做题的基本步骤。化二次型为标准型的实质也是实对称矩阵的正交相似对角化问题。

2、二次型的正定*问题

这一知识点主要考查小题。对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象矩阵的正定*判断可以通过利用标准形,规范形,特征值等得到*,这时应熟悉二次型正定有关的充分条件和必要条件。

第6篇:小学四年级数学三角形知识点复习资料

1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。

3、三角形具有稳定*。

4、三角形任意两边之和大于第三边。

5、三个角都是锐角的三角形叫做锐角三角形。

6、有一个角是直角的三角形叫做直角三角形。

7、有一个角是钝角的三角形叫做钝角三角形。

8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

9、两条边相等的三角形叫做等腰三角形。

10、三条边都相等的三角形叫等边三角形,也叫正三角形。

11、等边三角形是特殊的等腰三角形

12、三角形的内角和是180°。

13、四边形的内角和是360°

14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。