《二次根式的加减》教案设计

综合 2024-10-25 18:35:22

新的课程标准,倡导把课堂变为学生的自主合作、探究的场所,呼唤学生主体*的发展。下面是小编整理的二次根式的加减教案,希望大家喜欢!

教材分析:

本节内容出自九年级数学上册第二十一章第三节的靠前课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

学生分析:

本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手*作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识*评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

设计理念:

新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主*、探究*、合作*学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战*的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效*,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

教学目标知识与技能目标:

会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

过程与方法目标:

通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

情感态度与价值观:

通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

重点、难点:重点:

合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

难点:

二次根式加减法的实际应用。

关键问题:

了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

教学方法:.

1.引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

2.类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

教学目标:

1.知识目标:二次根式的加减法运算

2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3.情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景

师生活动

设计目的

活动一:

   情景引入,导学展示

    1.把下列二次根式化为最简二次根式:,;,,。上述两组二次根式,有什么特点?

    2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm和18dm的正方形木板?

   

   这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确*。  教师倾听学生的交流,指导学生探究。

  

问:什么样的二次根式能进行加减运算,运算到那一步为止。

   由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

  

   加强新旧知识的联系。通过观察,初步认识同类二次根式。

   引出二次根式加减法则。

3.A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

 例1.计算:

(1);

(2)- ;

 例2.计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

  

  

活动二:分层练习,合作互助

   1.下列计算是否正确?为什么?

(1)

(2);

(3)。

   2.计算:

(1);

(2)

(3)

(4)

  3.(见课本16页)

   

   补充:

活动三:分层检测,反馈小结

 教材17页习题:

A层、B层:2、3.

C层1、2.

  小结:

这节课你学到了什么知识?你有什么收获?

  作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

   此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1m,学生考虑问题要全面,不能漏掉任何一段钢材。

    老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

 A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

    先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

  小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

    把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

   学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确*,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

第2篇:《二次根式的加减》教案设计

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本p20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

第3篇:《二次根式的加减》第二课时的教案分析

一、内容和内容解析

1.内容

二次根式的加减乘除混合运算.

2.内容解析

二次根式的混合运算是本章所学内容的综合运用,运算过程中用到乘法分配律,还需用多项式的乘法法则和整式的乘法公式,教学中要注意让学生体会二次根式的运算与整式运算的联系.

基于以上分析,可以确定本课的教学重点是运用乘法分配律、多项式乘法法则及乘法公式进行二次根式的加减乘除混合运算.

二、目标和目标解析

1.目标

(1)掌握二次根式混合运算的法则,合理使用运算律.

(2)灵活运用运算律、乘法公式等技巧,使计算简便.

2.目标解析

达成目标(1)的标志是:学生能在有理数混合运算及整式的混合运算基础上,类比得出二次根式混合运算的法则及算理.

目标(2)是通过类比整式乘法公式让学生能熟练进行二次根式混合运算.

三、教学问题诊断分析

二次根式的混合运算,困难在于让学生体会二次根式的运算与整式运算的联系.在二次根式运算中,法则和乘法公式仍然适用.

本课的教学难点是:二次根式运算中,灵活运用多项式乘法法则及乘法公式.

四、教学过程设计

(一)提出问题

问题1:计算

(1);(2).

问题2:计算

(1);(2).

师生活动:学生*完成计算,小结算理.

追问1:问题1、2中的字母、可以代表哪些数与式.

师生活动:学生自由发言,引出、可代表二次根式.

设计意图:类比整式运算引出二次根式混合运算的法则与算理.

(二)探索新知,解决问题

问题3:类比问题,完成计算:

(1);(2).

师生活动:学生*思考完成,请学生板演,教师适时引导,两题均用乘法分配律.

设计意图:让学生体会到数的扩充过程中运算律的一致*.

问题4:在问题2中,若令,你能计算下列式子的值吗?

(1);(2).

师生活动:学生通过类比思考得出结论,教师引导学生得出二次根式运算中,多项式乘法法则和乘法公式仍然适用.

设计意图:让学生感受到数的扩充过程中数式通*.

(三)典型例题

例1计算:(1);(2).

例2计算:(1);

(2);

(3).

师生活动:学生*完成计算,教师适时给予评价.

设计意图:加强学生运算技能的训练,进一步让学生认识二次根式和整式*质运算法则上的一致*.例2、例3在不能用乘法公式的情况下,可用多项式乘法法则.

(四)课堂小结

整式的运算法则和乘法公式中的字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式,所以整式的运算法则和乘法公式适用于二次根式的运算.

设计意图:让学生加深数式通*的理解.

(五)布置作业

课本第15页第4题.

五、目标检测设计

1.计算:的值是.

2.计算:=;=.

3.计算:=.

4.计算:=.

5.计算:=.

设计意图:通过练习熟悉二次根式的运算的法则与算理.

第4篇:二次根式的加减说课稿

二次根式的加减说课稿怎么写,老师们是不是也在发愁呢?下面是小编为大家收集的关于二次根式的加减说课稿,欢迎大家阅读借鉴!

尊敬的各位评委,大家好,今天我说课的内容是人教版义务教育课程标准试验教科书数学八年级下册,第十六章《二次根式》第三节《二次根式的加减》靠前课时。下面我将从教材、学情、教法、学法、教学过程和板书设计等六个方面进行陈述。

一.说教材

1、教材地理位置和作用

二次根式的加减是八年级下册第16章第3节内容,是实数的一种基本运算。本节是在上节学习的化简二次根式的基础上,进一步学习二次根式的加减。在化简二次根式的同时,引导学生概括出同类二次根式的概念,类比整式的加减运算中的合并同类项,给出二次根式的加减运算法则,进而进行二次根式的加减混合运算。

2、教学三维目标

知识与能力:

1、了解同类二次根式的概念,掌握判断同类二次根式的方法;

2、学生能正确合并同类二次根式,进行二次根式的加减运算。

过程与方法:

正确掌握合并同类二次根式的方法,培养学生思维能力及运算能力。

情感、态度与价值观:

从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想,通过二次根式的加减,渗透二次根式化简合并后的形式简单美。

3、说教学重、难点

教学重点:同类二次根式的概念;掌握二次根式的加减运算法则。

教学难点:熟练掌握二次根式的加减运算。

二、说学情

八年级学生的数学思维特征由具体逻辑思维逐步过渡到抽象逻辑思维,但仍有很大程度的经验*,二次根式需要有一定的抽象思维能力,而且他们的发散思维较弱,对同类问题还不能很好的做到举一反三,对于本节课的内容理解还是有一定的难度,因此教学过程中应当对这部分引起注意,运用恰到好处的教学方法,充分激发学生的学习兴趣。

三、说教法

合理的教学方法可以使教学活动达到事半功倍的效果,作为老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此,本节课在教学中采用引导探究法、比较法、剖析法,不断纠正学生错误,从而树立牢固的计算方法。

四、说学法

为了明确教学目标,深化新课标,先复习二次根式的化简,并由此引出同类二次根式的定义,注意引导学生对同类二次根式和同类项、二次根式的加减的合并同类项进行比较学习。在理解、掌握和运用二次根式的加减法运算法则的学习过程中,逐步渗透类比、概括等数学思想,提高学生用数学方法和解决实际问题的能力。在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极*和兴趣。

五、说教学过程

根据新课标、教材及学生特点,为真正实现学生的自主学习,让学生参与知识的形成过程,我设计了五个教学流程:

课前导入——新课讲授——巩固练习

——归纳小结——布置作业

(一)课前导入

1、什么最简二次根式?

2、化简下列各数

1)2,8,18

2)3,12,27

3)5,20,35

组织学生活动以小组为单位抢答,然后我按各组表现给小组计分做归纳讲解,引出二次根式的有关知识。

(二)新课讲授

在本环节共设置了四组问题,通过与整式加减的类比学习,便于掌握二次根式加减法法则。通过解决问题讨论交流的整过程,让感受新知识解决的方法,并学会归纳所学新知识;让学生在归纳的过程中加深知识的记忆,并增强学生的分析、概括能力。

1、复习整式的加减运算

通过与整式加减的类比学习,便于掌握二次根式加减法法则。

2、例题计算:

那么减法呢?(提出同类二次根式,找出解题规律方法。)

3、从上面的计算可以看出二次根式的加减可以怎么进行,自己试着总结,师生共同归纳。

4、讨论:二次根式加减的步骤是什么?

1)将每个二次根式化为最简二次根式;

2)找出同类二次根式;

3)合并同类二次根式

(一化二找三合并)

通过解决问题,讨论交流的整过程,让感受新知识解决的方法,并学会归纳所学新知识;让学生在归纳的过程中加深知识的记忆,并增强学生的分析、概括能力。

(三)巩固练习

(四)课堂小结

引导学生对知识、方法、思想、思维的收获进行总结,并鼓励学生,总结情感态度价值观的收获,培养学生战胜困难的决心和信心。

1.几个二次根式化成最简二次根式后,如果它们的被开方式相同,那么,这几个二次根式称为同类二次根式。

2.二次根式相加减,应先把各个二次根式化成最简二次根式,然后把同类二次根式分别合并。

3.同类二次根式可以像同类项那样进行合并。

(五)布置作业

必做题:第17页习题21.3第1、2题

选做题:习题21.3第3题

六、说板书设计

二次根式的加减

二次根式加减时,可以先将二次根式化成最简二次根式后,再将同类二次根式合并。

以上就是我说课的全部内容,欢迎各位老师批评指正,谢谢!

更多相关文章推荐:

1.初中数学说课稿范文《二次根式》

2.初中数学《二次根式》说课稿

3.初中数学说课稿:一元二次不等式的解法

4.初中数学《一元二次不等式的解法》说课稿范文

5.初中数学《一元二次方程根》说课稿范文

6.初中数学《一元二次方程的概念》说课稿范文

7.九年级《实际问题与一元二次方程》说课稿

8.《一元二次不等式的解法(靠前课时)》说课稿

9.《秋天》说课稿

10.《家》说课稿

第5篇:二次根式的加减法的教学教案

教学建议

本节的重点有两个:

⒈同类二次根式的概念

⒉二次根式加减运算的方法

本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.

本节的难点二次根式的加减法运算

二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程当中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.

本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.

(1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,教师在教学过程中可根据学生的实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.

(2)在教材例1的教学中,教师可以根据学生情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于学生参与其中,也容易使学生获得成就感.

(3)在组织学生进行二次根式的加减法教学中,同样将例题细分成几个层次进行教学,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.

(4)在二次根式加减法的组织教学中,虽然教材已经不要求二次根式加减法的法则,但可以组织学生自己总结法则,既有利于学生的参与,又能提高学生的观察、分析和归纳能力.

(5)在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固。

教学设计示例1

一、素质教育目标

(一)知识教学点

1.使学生了解最简二次根式的概念和同类二次根式的概念.

2.能判断二次根式中的同类二次根式.

3.会用同类二次根式进行二次根式的加减.

(二)能力训练点

通过本节的学习,培养学生的思维能力并提高学生的运算能力.

(三)德育渗透点

从简单的同类二次根式的合并,层层深入,从解题的过程当中,让学生体会转化的思维,渗透辩证唯物主义思想.

(四)美育渗透点

通过二次根式的加减,渗透二次根式化简合并后的形式简单美.

二、学法引导

1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.

2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.

三、重点·难点·疑点及解决办法

1.教学重点二次根式的加减法运算.

2.教学难点二次根式的化简.

3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.

四、课时安排

2课时

五、教具学具准备

投影片

六、师生互动活动设计

1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.

2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.

3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.

4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程当中体会理解二次根式加减法的实质及解决的方法.

七、教学步骤

(-)明确目标

学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.

(二)整体感知

同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.

靠前课时

(-)教学过程

什么样的二次根式叫做最简二次根式?(由学生回答)

与的形式与实质是什么?

可以化简为.

继续提问:,可以化简吗?

,可以化简吗?

这就是本节课研究的内容——二次根式的加减法.

1.复习整式的加减运算

计算:

(1);

(2);

(3).

小结:整式的加减法,实质上就是去括号和合并同类项的运算.

2.例题

(1)计算.

解:.

(2)计算.

解:.

小结:

(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算.

(2)如果所给的二次根式不是最简二次根式,应该先化简,再进行加减运算.

定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.

3.例题

例1下列各式中,哪些是同类二次根式?,,,,,,.

解:略.

例2计算.

解:

例3计算.

解:

二次根式加减法的法则:

二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式进行合并,合并方法为系数相加减,根式不变.

(可对比整式的加减法则)

例4计算:

(1).

解:

(2).

解:

(二)随堂练习

计算:

(1);

(2);

(3).

练习:教材P192中1、2(1)、(2)、(3)、(4)、(5);教材P193中1、2.

(三)总结、扩展

同类二次根式的定义.

二次根式的加减法与整式的加减法进行比较,强调注意的问题.

(四)布置作业

教材P193中(1)、(2)、(3)、(4)、(5)、(6);教材P194中4(1)、(2)、(3)、(4).

(五)板书设计

标题

1.复习题5.例题(1)、(2)、

2.整式的加减例题(3)、(4)

3.例题(1)、(2)6.练习题

4.同类二次根式7.小结

第6篇:《二次根式加减》说课稿

一、说教材的地位和作用

1、内容:

二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.

2.本节在教材中的地位与作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第*章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

二、说教学目标、重点、难点:

1、教学目标:

(1)知识与技能:

1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.

2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.

理解和掌握二次根式加减的方法.

3.运用二次根式、化简解应用题.

4.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.

(2)数学思考:

先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简

(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(3)情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

2、教学重点、难点:二次根式化简为最简根式.二次根式的乘除、乘方等运算规律;

三、说如何突出重点、突破难点:

难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.由整式运算知识迁移到含二次根式的运算

为了突破难点,教学中我注意:

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

四、学情分析:二次根式是在学完了八年级下册第十七章《反比例正函数》、第*章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础

五、说教学教学策略和学法

(一)教法分析

根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题教学法,尽量做到问题让学生提,*让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:

1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。

2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。

(二)学法分析

使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。

(三)教学手段

采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。

六、说教学过程的设计:

本课共分为五个环节:(一)、复习引入新课;(二)、探索新知;(三)、巩固练习;(四)、总结反思;(五)、布置作业拓展升华。

(一)、复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课.

(二)、探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本*质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。

(三)、巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。

(四)、总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重点,即充分调动学生的积极*,从而达到培养学生归纳概括能力和语言表达能力。

(五)、布置作业拓展升华:在此部分中分为必做题:教科书上的题。选做题:(思考题)来自练习册。必做题面向全体学生,巩固重点,达标训练。选做题使不同的学生有不同的发展。这样做既达到了面向全体学生,又做到了因材施教的目的。

下一篇:用骄傲造句