高二数学向量公式知识点
数学向量公式、
1.单位向量:单位向量a0=向量a/|向量a|
2.p(x,y)那么向量op=x向量i+y向量j|向量op|=根号(x平方+y平方)
3.p1(x1,y1)p2(x2,y2)那么向量p1p2={x2-x1,y2-y1}|向量p1p2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*cos=x1x2+y1y2cos=向量a*向量b/|向量a|*|向量b|(x1x2+y1y2)=根号(x1平方+y1平方)*根号(x2平方+y2平方)
5.空间向量:同上推论(提示:向量a={x,y,z})
6.充要条件:如果向量a向量b那么向量a*向量b=0如果向量a//向量b那么向量a*向量b=|向量a|*|向量b|或者x1/x2=y1/y2
7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a*向量b=(向量a向量b)平方
《第2篇:高二数学知识点:向量》
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
(5)平行向量
方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.
若向量a、b平行,记作a∥b.
规定:0与任一向量平行.
(6)相等向量
长度相等且方向相同的向量叫做相等向量.
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.
②向量a,b相等记作a=b.
③零向量都相等.
④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.
2.对于向量概念需注意
(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.
(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.
(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.
《第3篇:高二数学暑假作业平面向量的知识点》
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2.加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
3.实数与向量的积:实数与向量的积是一个向量。
(1)||=||
(2)当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0.
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.
(2)若=(),b=()则‖b.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.
4.p分有向线段所成的比:
设p1、p2是直线上两个点,点p是上不同于p1、p2的任意一点,则存在一个实数使=,叫做点p分有向线段所成的比。
当点p在线段上时,当点p在线段或的延长线上时,
分点坐标公式:若=;的坐标分别为(),(),();则(-1),中点坐标公式:.
5.向量的数量积:
(1).向量的夹角:
已知两个非零向量与b,作=,=b,则aob=()叫做向量与b的夹角。
(2).两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则b=|||b|cos.
其中|b|cos称为向量b在方向上的投影.
(3).向量的数量积的*质:
若=(),b=()则e=e=||cos(e为单位向量);
bb=0(,b为非零向量);||=;
cos==.
(4).向量的数量积的运算律:
b=b()b=(b)=(+b)c=c+bc.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
《第4篇:高二数学知识点之平面向量》
平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量。以下是小编整理的高二数学知识点之平面向量,欢迎参考阅读!
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2.加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
3.实数与向量的积:实数与向量的积是一个向量。
(1)||=||·||;
(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.
(2)若=(),b=()则‖b.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.
4.P分有向线段所成的比:
设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。
当点P在线段上时,>0;当点P在线段或的延长线上时,<0;
分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.
5.向量的数量积:
(1).向量的夹角:
已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。
(2).两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.
其中|b|cos称为向量b在方向上的投影.
(3).向量的数量积的*质:
若=(),b=()则e·=·e=||cos(e为单位向量);
⊥b·b=0(,b为非零向量);||=;
cos==.
(4).向量的数量积的运算律:
·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
《第5篇:高二数学平面向量常考知识点归纳》
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2.加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
3.实数与向量的积:实数与向量的积是一个向量。
(1)||=||
(2)当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0.
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.
(2)若=(),b=()则‖b.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.
4.p分有向线段所成的比:
设p1、p2是直线上两个点,点p是上不同于p1、p2的任意一点,则存在一个实数使=,叫做点p分有向线段所成的比。
当点p在线段上时,当点p在线段或的延长线上时,
分点坐标公式:若=;的坐标分别为(),(),();则(-1),中点坐标公式:.
5.向量的数量积:
(1).向量的夹角:
已知两个非零向量与b,作=,=b,则aob=()叫做向量与b的夹角。
(2).两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则b=|||b|cos.
其中|b|cos称为向量b在方向上的投影.
(3).向量的数量积的*质:
若=(),b=()则e=e=||cos(e为单位向量);
bb=0(,b为非零向量);||=;
cos==.
(4).向量的数量积的运算律:
b=b()b=(b)=(b);(+b)c=c+bc.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
《第6篇:高二数学平面向量知识点归纳》
1、基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2、加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2)。
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
3、实数与向量的积:
实数与向量的积是一个向量。
(1)||=||
(2)当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0。
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=。
(2)若=(),b=()则‖b。
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2。
4、p分有向线段所成的比:
设p1、p2是直线上两个点,点p是上不同于p1、p2的任意一点,则存在一个实数使=,叫做点p分有向线段所成的比。
当点p在线段上时,当点p在线段或的延长线上时,
分点坐标公式:若=;的坐标分别为(),(),();则(—1),中点坐标公式:。
5、向量的数量积:
(1)向量的夹角:
已知两个非零向量与b,作=,=b,则aob=()叫做向量与b的夹角。
(2)两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则b=|||b|cos。
其中|b|cos称为向量b在方向上的投影。
(3)向量的数量积的*质:
若=(),b=()则e=e=||cos(e为单位向量);
bb=0(,b为非零向量);||=;
cos==。
(4)向量的数量积的运算律:
b=b()b=(b)=(b);(+b)c=c+bc。
6、主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
《第7篇:高二数学平面向量知识点梳理》
考点一:向量的概念、向量的基本定理
【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛*,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇
【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用
【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将形和数紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
《第8篇:高二数学下册第二单元平面向量的知识点》
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景.
(2)理解平面向量的概念和两个向量相等的含义.
(3)理解向量的几何表示.
2.向量的线*运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
(3)了解向量线*运算的*质及其几何意义.
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义.
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义.
(2)了解平面向量的数量积与向量投影的关系.
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
【考纲阐释】
向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,同时又是数形结合思想运用的典范.向量作为代数对象,它可以运算;作为几何对象,它有方向,可以刻画直线、平面、切线等几何对象,它有长度,可以刻画面积、体积等几何度量问题。正是由于向量既具有几何形式又具有代数形式的双重身份,所以使它成为中学数学知识的一个交汇点,成为联系多项内容的桥梁和纽带.因此,高考中,不仅注重考查向量本身和基础知识和方法,而且常与其它知识(如解析几何、三角函数与解三角形、数列等)一起进行综合考查.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学下册第二单元知识点,希望大家喜欢。