生活中有趣的数学故事
三个箱子,里面装有水果:一个装50个苹果,一个装50个梨,一个装25个苹果和25个梨。三个箱子上各贴了一个标签,分别写有“50个苹果”、“50个梨”、“25个苹果+25个梨”。现在知道这三个箱子上面贴的标签都是错的(标签与里面装的真实水果不符合)。问题是,你最少可以取几个水果,判断出3个箱子各装了什么?
*解析:
一个就可以解决了。
先拿“25个苹果+25个梨”的那个箱子,如果拿出来的是苹果的话,那么这个箱子应该是苹果的。那么贴苹果的箱子里装的应该是梨,贴梨的箱子应该就是“25个苹果+25个梨”。
如果贴“25个苹果+25个梨”的箱子里面拿出来的是梨的话,那么贴梨的箱子就应该是苹果,苹果的箱子就应该是“25个苹果+25个梨”。
有关生活中有趣的数学小故事2
数学的学习是非常有趣的,它是我们日常生活的一部分,每个人都能从中获得享受,通过数学小故事的学习,大家一定会发现学习数学的快乐。生活中有趣的数学小故事大家听过吗?请跟随我们,一起来探寻数学学习的奥秘!
快乐学数学:生活中有趣的数学小故事
自己身体的计算器
我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的*是63。
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,*并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑*和蓝*袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜*是一样的。不管成对的那双袜子是黑*还是蓝*,最终都会有一双颜*一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的*是3只。
当然只有当袜子是两种颜*时,这种情况才成立。如果抽屉里有3种颜*的袜子,例如蓝*、黑*和白*袜子,你要想拿出一双颜*一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜*的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有n种类型的袜子,你必须取出n+1只,才能确保有一双完全一样的。
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
火车相向而行问题
两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车a开始向火车b方向飞行。它与火车b相遇后,马上掉头向火车a飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?
我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能*非常小,但是这种可能*是存在的。其次,即使我们排除了这种很小的可能*,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻*,开始抛时硬币朝上的一面在落地时仍朝上的可能*大约是51%。
之所以会发生上述情况,是因为在用大拇指轻*时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
同一天过生日的概率
假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确*是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
只要大家多听、多看、多听和多练,数学成绩很快就能提高。希望我们提供的生活中有趣的数学小故事,对大家学习数学有所帮助,其实数学是非常有趣的,大家一定要开心学数学!!
生活中有趣的数学小故事3
自己身体的计算器
我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的*是63。
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,*并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑*和蓝*袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜*是一样的。不管成对的那双袜子是黑*还是蓝*,最终都会有一双颜*一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的*是3只。
当然只有当袜子是两种颜*时,这种情况才成立。如果抽屉里有3种颜*的袜子,例如蓝*、黑*和白*袜子,你要想拿出一双颜*一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜*的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有n种类型的袜子,你必须取出n+1只,才能确保有一双完全一样的。
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
火车相向而行问题
两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车a开始向火车b方向飞行。它与火车b相遇后,马上掉头向火车a飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?
我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能*非常小,但是这种可能*是存在的。其次,即使我们排除了这种很小的可能*,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻*,开始抛时硬币朝上的一面在落地时仍朝上的可能*大约是51%。
之所以会发生上述情况,是因为在用大拇指轻*时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
同一天过生日的概率
假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确*是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
其实数学是非常有趣的,大家一定要开心学数学!
生活中有趣的数学小故事4
自己身体的计算器
我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的*是63。
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,*并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑*和蓝*袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜*是一样的。不管成对的那双袜子是黑*还是蓝*,最终都会有一双颜*一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的*是3只。
当然只有当袜子是两种颜*时,这种情况才成立。如果抽屉里有3种颜*的袜子,例如蓝*、黑*和白*袜子,你要想拿出一双颜*一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜*的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有n种类型的袜子,你必须取出n+1只,才能确保有一双完全一样的。
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
火车相向而行问题
两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车a开始向火车b方向飞行。它与火车b相遇后,马上掉头向火车a飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?
我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能*非常小,但是这种可能*是存在的。其次,即使我们排除了这种很小的可能*,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻*,开始抛时硬币朝上的一面在落地时仍朝上的可能*大约是51%。
之所以会发生上述情况,是因为在用大拇指轻*时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
同一天过生日的概率
假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确*是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
其实数学是非常有趣的,大家一定要开心学数学!
有趣的数学故事5
一天,小熊来到南岭山羊纸盒店,想跟山羊师傅学做纸盒。
山羊师傅在店堂里接待了他,问:“你果真想学徒?”
小熊认真地说:“我真的想学。”
“到我这儿来当学徒,我先得考考你有关手艺方面的知识,我满意才收。”山羊师傅捋了捋胡须又说。
小熊一蹦老高说“行!”
山羊师傅讲开了:“前天早晨,白兔先生来我这里,请我帮他制做一个长3分米,宽2分米,高1分米的纸盒,你替我算算需要多少黄纸板?”
小熊眨了眨眼睛说:“需要22个平方分米的黄纸板。”
山羊师傅点了点头。接着又说:“今天鹿伯伯来我这里请我制做一个纸盒,它的长、宽、高正好是白兔先生的纸盒的3倍,你根据这个倍数关系,能不能直接算出鹿伯伯的纸盒需要多少黄纸板最省料?”
小熊沉吟了一会儿,说:“只要用22×3=66(平方分米)就行了。”
山羊师傅哈哈地笑了起来,连声说:“做不起来的。”
小熊又重新动起了脑筋:“鹿伯伯纸盒的长、宽、高是白兔先生的3倍,长×3、宽×3、高×3,这样3×3×3=27(倍),再用22×27=594(平方分米),这就是鹿伯伯的纸盒所要的黄纸板。”
山羊师傅说:“这又太浪费了,像这种求扩大倍数后的表面积,只要将原来的表面积乘以扩大的倍数再乘以扩大的倍数就行了。不妨回去试试看。下次再来吧!”说完,山羊师傅忙了起来。
小熊求师不成,红着脸走了。
有关数学的有趣故事6
1、四舍五入
仔仔兴高采烈地从学校里回来,问妈妈:“爸爸呢?”
妈妈看到仔仔兴奋的样子,奇怪地问:“爸爸在家,你找爸爸做什么?”“我向爸爸要5角钱。”
“为什么?”妈妈问道。
“在考数学以前,爸爸对我说‘如果考了100分,就给我1元钱,考80分给8角。’今天,我数学考了45分。“仔仔回答说。
妈妈吃惊地问:“什么!数学才考45分?”
仔仔得意地说:“是呀,数学上要四舍五入,因此,爸爸必须付5角钱。”
2、乘法分配律
老师发现一个学生在作业本上的姓名是:木(1+2+3)。
老师问:"这是谁的作业本?"
一个学生站起来:"是我的!"
老师:"你叫什么名字?"
学生:"木林森!"
老师:"那你怎么把名字写成这样呢?"
学生:"我用的是乘法分配律!"
3、数字是不会骗人的
“数字是不会骗人的,”老师说:“一座房子,如果一个人要花上十二天盖好,十二个人就只要一天。二百八*人只要一小时就够了。”
一个学生接着说:“一万七千二百八十人只要一分钟,一百零三万六千八百人只要一秒钟。此外,如果一艘轮船横渡大西洋要六天,六艘轮船只要一天就够了。四杯25度的水加在一起就变开水了!数字是不会骗人的!”
4、作文成绩
语文作文课上,老师布置了一篇500字的作文。
下课铃响了,一学生发现自己只写了250字,灵机一动,在文章最后一行写了“上述内容×2”。
几天后,作文本发下来了,在成绩的位置上赫然出现“80÷2”。
5、0的本领
有一次,9轻蔑地对0说:「你的本领,只有0」。
0低着头,恭敬回答说:「我承认。您真使我钦佩,因为,你的本领,是我的一万倍(即0*10000)」。
9愚蠢得意地昂首阔步。不过,却引来其它数字哈哈大笑。
6、十一点半
上午第四节课,a生肚子饿,无心听课,坐在位置上呆呆地想着牛肉,面包。
数学老师发现他走神,便提问他:“1.130小数向右移动一位,将会怎么样?”
a生毫不犹豫地回答:“将会开午饭!”
7、概率
我去参观气象站,看到许多预测天气的最新仪器。
参观完毕,我问站长:“你说有百分之七十五的概率下雨时,是怎样计算出来的?”
站长不必多想便答道:“那就是说,我们这里有四个人,其中三个认为会下雨。”
8、左右分开
老师出了一道题:8÷2=?
随后问大家:"8分为两半等于几?"
皮皮回答:"等于0!"
老师说:"怎么会呢?"
皮皮解释:"上下分开!"
丁丁说道:"不对,等于耳朵!"
老师:"哦?"
丁丁回答:"左右分开呗!"
[有关数学的有趣故事]相关文章:
有趣的小学数学故事7
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
生活中的数学作文400字:有趣的数学题8
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。
我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:*币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”
妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的*激凌还要舒服。
在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
有趣的数学题的故事9
很小的时候,妈妈就教我写数字,并用游戏的形式让我进行简单的加减运算。正是从那时候开始,我喜欢上了数学,常常要妈妈出思考题给我做。
记得有一次,妈妈问我:“一张桌子坎掉一个角,还有几个角?”我不假思索地回答:“是三个角。”妈妈摇*说:“不全对,你好好动脑筋!”“怎么会不对呢?原来有4个角,减去坎掉的一个,不是还剩下3个角吗?”我觉得很奇怪。于是,我找来一张正方形纸,用剪*剪下一个角,哇!原来剪去一个角的地方反而还会多出来一个角,这样就变成5个角了,而3个角却怎么也剪不出来。这时候,我对妈妈说:“是5个角。”她高兴地问我是怎么知道的,我说了我的方法,妈妈赞许地说:“是啊,学习数学不但要动脑思考,还要学会动手*作,手脑并用,才能获得真知。”但妈妈还是说不全对,“其实3个角也是对的。”后来在妈妈的指导下,我终于把3个角剪出来了。由于剪的方法不同,所以结果也不一样。
妈妈说得很对,手脑并用,才能获得真知!
谢力翱指导老师:谢凌楸